

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924004444042

Smithsonian Miscellaneous Collections

854

SMITHSONIAN

GEOGRAPHICAL TABLES

PREPARED BY

R. S. WOODWARD

THIRD EDITION

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1906

The Riverside Press, Cambridge, Mass., U. S. A. Electrotyped and Printed by H. O. Houghton & Ca.

ADVERTISEMENT TO THIRD EDITION.

THE second edition of the Smithsonian Geographical Tables issued in 1897 having become exhausted, a third edition is now printed with a few necessary changes made in the plates.

RICHARD RATHBUN, Acting Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY, August 6, 1906.

ADVERTISEMENT TO SECOND EDITION.

THE edition of the Smithsonian Geographical Tables issued in 1894 having become exhausted, a second edition is now printed with a few necessary changes made in the plates.

S. P. LANGLEY, Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY, October 30, 1897.

ADVERTISEMENT.

IN connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852 as a volume of the Miscellaneous Collections.

A second edition was published in 1857, and a third edition, with further amendments, in 1859.

Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by meteorologists and physicists that, after twenty-five years of valuable service, the work was again revised, and a fourth edition was published in 1884.

In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish the new work in three parts : Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Doctor Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation, that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893. The present volume, forming the second of the series, the Geographical Tables, has been prepared by Professor R. S. Woodward, formerly of the United States Coast and Geodetic Survey, but now of Columbia College, New York, who has brought to the work a very wide experience both in field work and in the reduction of extensive geodetic observations.

S. P. LANGLEY, Secretary.

PREFACE.

In the preparation of the following work two difficulties of quite different kinds presented themselves. The first of these was to make a judicious selection of matter suited to the needs of the average geographer, and at the same time to keep the volume within prescribed limits. Of the vast amount of material available, much must be omitted from any work of limited dimensions, and it was essential to adopt some rule of discrimination. The rule adopted and adhered to, so far as practicable, was to incorporate little material already accessible in good form elsewhere. Accordingly, while numerous references are made in the volume to such accessible material, an attempt has been made wherever feasible to introduce new matter, or matter not hitherto generally available.

The second difficulty arose from the present uncertainty in the relation of the British and metric units of length, or rather from the absence of any generally adopted ratio of the British yard to the metre. The dimensions of the earth adopted for the tables are those of General Clarke, published in 1866, and now most commonly used in geodesy. These dimensions are expressed in English feet, and in order to convert them into metres it is necessary to adopt a ratio of the foot to the metre. The ratio used by General Clarke, and hitherto generally used, is now known to be erroneous by about one one hundred thousandth part. The ratio used in this volume is that adopted provisionally by the Office of Standard Weights and Measures of the United States and legalized by Act of Congress in 1866. But inasmuch as a precise determination of this ratio is now in progress under the auspices of the International Bureau of Weights and Measures, and inasmuch as the value for the ratio found by this Bureau will doubtless be generally adopted, it has been thought best in the present edition to restrict quantities expressed in metric measures to limits which will require no change from the uncertainty in question. In conformity with this decision the dimensions of the earth are given in feet only, and, with a few unimportant exceptions, to which attention is called in the proper places, tables giving quantities in metres are limited to such a number of figures as are definitely known.

It is a matter of regret that, owing to the cause just stated, less prominence has been given in the tables to metric than to British units of length. On the other hand, it seems probable that the more general use of British units will meet the approval of the majority of those for whose use the volume is designed.

The introductory part of the volume is divided into seven sections under the heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of Errors, and Explanation of Source and Use of Tables, respectively. In presenting the subjects embraced under the first six of these headings an attempt was made to give only those features leading directly to practical applications of the principles involved. It is hoped, however, that enough has been given of each subject to render the work of value in a broader sense to those who may desire to go beyond mere applications.

The most of the calculations required in the preparation of the tables were made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work was done with skill and fidelity, and it is believed that the systematic checks applied by them have rendered the tables they computed entirely trustworthy. Mention of the particular tables computed by each of them is made in the Explanation of Source and Use of Tables, where full credit is given also for data not specially prepared for the volume.

The Appendix to the present volume is that prepared by Mr. George E. Curtis for the Meteorological Tables. Its usefulness to the geographer is no less obvious and general than to the meteorologist.

The proofs have been read independently by Mr. Charles H. Kummell and the editor. The plate proofs, also, have been read by the editor; and while it is difficult to avoid errors in a first edition of a work containing many formulas and figures, it is believed that few, if any, important errata remain in this volume.

R. S. WOODWARD.

COLUMBIA COLLEGE, New York, N. Y., June 15, 1894.

CONTENTS. -----

USEFUL FORMULAS.

1. Algebraic Formulas					PAGE XIII
a. Arithmetic and geometric means				·	xiii
b. Arithmetic progression					xiii
c. Geometric progression					xiii
d. Sums of special series				•	xiii
e. The binomial series and applications					xiv
f. Exponential and logarithmic series					xiv
g. Relations of natural logarithms to other logarithms					xv
2. TRIGONOMETRIC FORMULAS				:	xv
a. Signs of trigonometric functions			Ś		xv
b. Values of functions for special angles					xv
c. Fundamental formulas					xv
d. Formulas involving two angles					xvi
e. Formulas involving multiple angles					xvi
f. Exponential values. Moivre's formula					xvi
g. Values of functions in series					xvii
h. Conversion of arcs into angles and angles into arcs					xvii
3. FORMULAS FOR SOLUTION OF PLANE TRIANGLES					xviii
4. Formulas for Solution of Spherical Triangles					xx
a. Right angled spherical triangles					xx
b. Oblique angled triangles					xx
5. Elementary Differential Formulas					xxi
a. Algebraic				•	xxi
b. Trigonometric and inverse trigonometric					xxi
6. TAVLOR'S AND MACLAURIN'S SERIES	•	•		•	xxii
a. Taylor's series	•	•			xxii
b. Maclaurin's series					xxii
c. Example of Taylor's series					xxii
d. Example of Maclaurin's series					xxiii
7. ELEMENTARY FORMULAS FOR INTEGRATION					xxiii
a. Indefinite integrals	•				xxiii
b. Definite integration	•		•	•	xxvi
MENSURATION.					
- I wro					*****

XXVIII	•	٠	•	٠	•	٠	•	•		•	•	•	•	•	• •		• •	LINES	1.
xxviii																circle .	[n a	a.	
xxviii			•						•						gon	egular pol	[n re	ь.	
xxix	•	•	•	•	•	•		•	•		•	•		•	••••	llipse	[n el	c.	

2.	ARE	AS .	•	• •			•	•				•	•					•			•	xxix
	a.	Area	of	plane	tria	ngle	3				•	•	•	•	•		•		•			xxix
	b.	Area	of	trape	zoid		•			•	•	•				•	•					xxix
	c.	Area	of	regul	ar p	olyg	or	1			•						•	•				XXX
	d.	Area	of	circle	, cire	cula	r a	ant	սսն	15,	etc					•		•		•	•	XXX
	e.	Area	of e	ellips	е.	•	•		•	•	•	•										XXX
	f.	Surfa	ce o	of sph	iere,	etc.				•								•				xxxi
	g.	Surfa	ice d	of rig	t c	ylin	de	r		•												xxxi
	h.	Surfa	ice (of rig	ht c	one				•		•										xxxi
	i.	Surfa	ce .o	of sph	eroio	ł.		•'			•						•	•				xxxi
3.	Volu	JMES.												•								xxxii
	a.	Volu	me	of pri	ism																	xxxii
	b.	Volu	me	of py	rami	d.				•		•	•		•							xxxii
	с.	Volu	me o	of rig	ht ci	rcul	ar	cy	/lin	de	r				•							xxxii
	d.	Volu	me	of rig	ht c	one	wi	ith	cir	cu	lar	ba	se				•	•	•	•		xxxii
	e.	Volu	me o	of spl	here	and	ls	ph	eric	al	seg	gme	ent	s								xxxii
	f.	Volur	ne c	of elli	psoi	d.		•			•											xxxiii

UNITS.

1.	STANDARDS OF LENGTH AND MASS				•	•			•	xxxiv
2.	BRITISH MEASURES AND WEIGHTS .									xxxvii
	a. Linear measures		•			•		•		xxxvii
	b. Surface or square measures .			•	•					xxxviii
	c. Measures of capacity			•			•		•	xxxviii
	d. Measures of weight				•					xxxix
3.	METRIC MEASURES AND WEIGHTS .						•	•		xl
4.	The C. G. S. System of Units		•							. xlii

GEODESY.

1.	FORM OF THE EARTH. THE EARTH'S SPHEROID. THE GEOID	xliii
2.	Adopted Dimensions of Earth's Spheroid	xliii
3.	Auxiliary Quantities	xliii
4.	Equations to Generating Ellipse of Spheroid	xliv
5.	LATITUDES USED IN GEODESY	xliv
6.	Radii of Curvature	xlv
7.	Lengths of Arcs of Meridians and Parallels of Latitude .	xlvi
	a. Arcs of meridian	xlvi
	b. Arcs of parallel \ldots \ldots \ldots \ldots \ldots \ldots \ldots	xlix
8.	RADIUS-VECTOR OF EARTH'S SPHEROID	1
9.	AREAS OF ZONES AND QUADRILATERALS OF THE EARTH'S SURFACE	1
10.	Spheres of Equal Volume and Equal Surface with Earth's	
	Spheroid	lij
11.	CO-ORDINATES FOR THE POLYCONIC PROJECTION OF MAPS	liii
12.	Lines on a Spheroid	lvi
	a. Characteristic property of curves of vertical section	lvi
	b. Characteristic property of geodesic line	lvii

13.	Solution of Spheroidal Triangles	lvii
	a. Spherical or spheroidal excess	lviii
14.	GEODETIC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH	lviii
	a. Primary triangulation	lviii
	b. Secondary triangulation	lx
15.	TRIGONOMETRIC LEVELING	lxi
	a. Computation of heights from observed zenith distances	lxi
	b. Coefficients of refraction	lxiii
	c. Dip and distance of sea horizon	lxiii
16.	Miscellaneous Formulas	lxiii
	a. Correction to observed angle for eccentric position of instrument	lxiii
	b. Reduction of measured base to sea level	lxiv
	c. The three-point problem	lxiv
17.	SALIENT FACTS OF PHYSICAL GEODESY	lxv
	a. Area of earth's surface, areas of continents, area of oceans	lxv
	b. Average heights of continents and depths of oceans	lxv
	c. Volume, surface density, mean density, and mass of earth	lxv
	d. Principal moments of inertia and energy of rotation of earth .	lxvi

ASTRONOMY.

1.	THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE .	lxvii
2.	Spherical Co-ordinates	lxvii
	a. Notation	lxvii
	b. Altitude and azimuth in terms of declination and hour angle .	lxviii
	c. Declination and hour angle in terms of altitude and azimuth .	lxix
	d. Hour angle and azimuth in terms of zenith distance	lxix
	e. Formulas for parallactic angle	lxix
	f. Hour angle, azimuth, and zenith distance of a star at elongation	lxx
	g. Hour angle, zenith distance, and parallactic angle for transit of	
	a star across prime vertical	lxx
	h. Hour angle and azimuth of a star when in the horizon, or at the	
	time of rising or setting	lxxi
	i. Differential formulas	lxxii
3.	Relations of Different Kinds of Time used in Astronomy .	lxxii
	a. The sidereal and solar days	lxxii
	b. Relation of apparent and mean time	lxxiii
	c. Relation of sidereal and mean solar intervals of time	lxxiii
	d. Interconversion of sidereal and mean solar time	lxxiii
	e. Relation of sidereal time to the right ascension and hour angle	
	of a star	lxxiv
4.	DETERMINATION OF TIME	lxxiv
	a. By meridian transits	lxxiv
	b. By a single observed altitude of a star	lxxvi
	c. By equal altitudes of a star	lxxvii
5.	DETERMINATION OF LATITUDE	lxxvii
	a. By meridian altitudes	lxxvii
	b. By the measured altitude of a star at a known time	lxxviii
	c. By the zenith telescope	lxxix

ix

6.	DETERMINATION OF AZIMUTH	lxxix
	a. By observation of a star at a known time	lxxix
	b. By an observed altitude of a star	
	c. By equal altitudes of a star	lxxxi

THEORY OF ERRORS.

1.	LAWS	s o	F	Erre	OR			•			•											•			lxxxiii
	a.	\mathbf{P}	rot	able	, n	nea	n,	an	d	av	era	age	er	ror	5										lxxxiv
	b.	Pı	rob	able	, n	nea	n,	av	era	age	e, a	and	m	axi	mι	ım	aci	ua	l er	ror	so	of	inte	r-	
			ро	lated	l lo	oga	rit	hm	ıs,	tr	igc	ono	me	tric	: ft	inc	tio	ns,	eto						lxxxv
2.	The	\mathbf{M}	ET	HOD	OF	L	EA	ST	S	QU	JAF	RES													lxxxvi
	a.	G	ene	eral s	sta	ten	nei	nt e	of	me	eth	od											•		lxxxvi
	b.	R	.ela	tion	of	pr	ob	abl	le,	m	ear	n, a	nd	av	er	age	er	ror	s						lxxxviii
	с.	С	ase	e of a	a si	ing	le	un	kn	٥v	vn	qu	ant	ity											lxxxix
	d.	С	ase	e of o	obs	erv	7ec	l fu	ind	cti	on	of	sev	era	al ı	ınk	no	wn	qu	ant	itie	es			xc
	e.	С	ase	e of f	fun	cti	on	s o	of s	sev	er	al c	obs	erv	ed	qu	an	titi	es			•			xciii
	f.	С	om	puta	tio	n (of	me	ear	n a	nd	pro	oba	ble	e e	rro	rs	of	fur	ncti	ons	5 C	f c	b-	
			se	rved	q١	ıan	tit	ies													•	•		•	xcv

EXPLANATION OF SOURCE AND USE OF TABLES.

Tables 1 and 2 .																		•		xcix
Table 3		•	•					•	•			•				•	•		•	xcix
Table 4									•								•	•	•	xcix
Tables 5 and 6 .		•					•	•		•			•	•		•	•		•	xcix
Tables 7 and 8 $$.				•			•	•		•	•		•	•	•	•	•		•	с
Table 9																				С
Tables 10 and 11				•			•	•	•	•			•	•	•	•			٠	с
Table 12			•	•	•		•	•	•		•		•	•	•	•		•	•	С
Tables 13 and 14																				с
Tables 15 and 16		•	•	•		•	•	•	•			•	•		•	•	•	•	•	ci
Table 17	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	ci
Table 18																				cii
Tables 19–24.				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	cii
Tables 25-29	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	ciii
Table 30																				ciii
Table 31	•	•	•	•	•	•	•	•	•	•	•	٠	, .	•	•	•	•	•	•	civ
Tables 32 and 33																				civ
Tables 34 and 35																				civ
Tables 36 and 37																				civ
Table 38																				civ
Table 39																				civ
Table 40																				civ
Table 41																				cv
Table 42	•	•	•	•	٠	•	•	•	•	٠	٠	•	٠	٠	•	•	•	•	•	cv

	TABLES.	
TABL	^B For converting U. S. Weights and Measures — Customary to	PAGE
	Metric.	_
2.	For converting U. S. Weights and Measures Metric to Cus-	2
	tomary	
3.	Values of reciprocals, squares, cubes, square roots, cube roots,	3
5.	and common logarithms of natural numbers	
4.	Circumference and area of circle in terms of diameter d	4-22
5.	Logarithms of numbers, 4-place	23
5. 6.	Antilogarithms, 4-place	24-25
7.	Natural sines and cosines	26-27
8.	Natural tangents and cotangents	28-29
g.	Traverse table (differences of latitude and departure)	30-31
9. 10.		32-47
11.	Logarithms of meridian radius of curvature in English feet Logarithms of radius of curvature of normal section in English feet	48-56
12.	Logarithms of radius of curvature of normal section in English feet Logarithms of radius of curvature (in metres) of sections oblique	57-65
14.	4	66–67
12.	Logarithms of factors for computing spheroidal excess of triangles	00-07
• 3.	(unit = English foot)	68
14.	Logarithms of factors for computing spheroidal excess of triangles	00
	(unit = the metre)	69
15.	Logarithms of factors for computing differences of latitude, longi-	09
5	tude, and azimuth in secondary triangulation (unit = English	
	foot)	70-73
16.	Logarithms of factors for computing differences of latitude, longi-	1- 13
	tude, and azimuth in secondary triangulation (unit == the metre)	74-77
17.	Lengths of terrestrial arcs of meridian (in English feet)	78-80
18.	Lengths of terrestrial arcs of parallel (in English feet)	81-83
19.	Co-ordinates for projection of maps, scale $= 1/250000$,	84-91
20.	Co-ordinates for projection of maps, scale $= 1/125000$	92-101
21.		102-109
22.		110-121
23.	Co-ordinates for projection of maps, scale = $1/200000$.	122-131
24.	Co-ordinates for projection of maps, scale = $1/80000$	132-141
25.	Areas of quadrilaterals of the earth's surface of 10° extent in lati-	
	tude and longitude	142
26.	Areas of quadrilaterals of the earth's surface of 1° extent in lati-	
		144-145
27.	Areas of quadrilaterals of the earth's surface of 30' extent in lati-	
	tude and longitude	146-148
28.	Areas of quadrilaterals of the earth's surface of 15' extent in lati-	
	tude and longitude	150-154
29.	Areas of quadrilaterals of the earth's surface of $10'$ extent in lati-	
	tude and longitude	•
30.	Determination of heights by the barometer (formula of Babinet) .	160
31.	Mean astronomical refraction	161

xi

32.	Conversion of arc into time	162
33.	Conversion of time into arc	163
34.	Conversion of mean time into sidereal time	164
35.	Conversion of sidereal time into mean time	165
36.	Length of 1° of the meridian at different latitudes (in metres, statute miles, and geographic miles).	
27	Length of 1° of the parallel at different latitudes (in metres, stat-	
37.	ute miles, and geographic miles)	
38.	Interconversion of nautical and statute miles	168
39.	Continental measures of length, with their metric and English	
	equivalents	
40.	Acceleration (g) of gravity on surface of earth and derived func- tions	
AT.	Linear expansions of principal metals	
42.	Fractional change in a number corresponding to a change in its	
42.	Fractional change in a number corresponding to a change in its logarithm	
42.	logarithm	
42.	logarithm	
-	logarithm	
Nume	logarithm	170
Nume Goede	logarithm	170
Nume Goede Astror	logarithm	170 171 171
Nume Goede Astron Physic	logarithm	170 171 171 172
Nume Goede Astron Physic	logarithm APPENDIX. arrical Constants . ctical Constants . nomical Constants . cal Constants . cal Constants . cal Constants . cal Constants . conversion of English and Metric Units —	170 171 171 172 172
Nume Goede Astron Physic	logarithm APPENDIX. arrical Constants . etical Constants . nomical Constants . cal Constants . otic conversion of English and Metric Units . English to Metric .	170 171 171 172 172 173
Nume Goede Astror Physic Synop	logarithm APPENDIX. arrical Constants . ctical Constants . nomical Constants . cal Constants . cal Constants . cal Constants . cal Constants . conversion of English and Metric Units —	170 171 171 172 172 173
Nume Goede Astror Physic Synop	logarithm APPENDIX. arrical Constants	170 171 171 172 172 173 174

,

I. ALGEBRAIC.

a. Arithmetic and geometric means. The arithmetic mean of n quantities a, b, c, \ldots is

$$\frac{1}{n}(a+b+c+\dots);$$

their geometric mean is

$$(a \ b \ c \ldots)^{\frac{1}{n}}$$

A case of special interest is

$$\sqrt{a\ b} = \frac{1}{2} \left(a+b\right) \left\{ 1 - \left(\frac{a-b}{a+b}\right)^2 \right\}^{\frac{1}{2}}.$$

b. Arithmetic progression. If a is the first term, and a + d, a + 2 d, a + 3 d, ... are the successive terms, the *n*th or last term z is

$$z = a + (n - 1) d.$$

The sum s of the n terms of this series is

$$s = \frac{1}{2} (a + z) n = \{a + \frac{1}{2} (n - 1) d\} n$$

= $\{z - \frac{1}{2} (n - 1) d\} n$
= $\frac{1}{2} (a + z) \left(\frac{z - a}{d} + 1\right).$

c. Geometric progression. If a is the first term, and $a r, a r^2, \ldots$ are the successive terms, the *n*th or last term z is

$$z = a r^{n-1}.$$

$$s = \frac{a (r^n - 1)}{r - 1} = \frac{r z - a}{r - 1} = \frac{z (r^n - 1)}{(r - 1) r^{n - 1}}$$
$$r < 1 \text{ and } n = \infty,$$
$$s = \frac{a}{1 - r}.$$

d. Sums of special series.

$$\begin{array}{rcl} \mathbf{I} + 2 + 3 + 4 + \dots + n & = \frac{1}{2}n(n+1) \\ 2 + 4 + 6 + 8 + \dots + 2n & = n(n+1) \\ \mathbf{I} + 3 + 5 + 7 + \dots + (2n-1) & = n^2 \\ \mathbf{I}^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 & = \frac{1}{6}n(n+1)(2n+1) \\ \mathbf{I}^8 + 2^8 + 3^8 + 4^8 + \dots + n^8 & = \frac{1}{4}n^2(n+1)^2. \end{array}$$

If

e. The binomial series and applications. For a > b, $(a \pm b)^n = a^n \pm n \ a^{n-1} \ b + \frac{n \ (n-1)}{1 \cdot 2} \ a^{n-2} \ b^2$ $\pm \frac{n \ (n-1) \ (n-2)}{1 \cdot 2 \cdot 3} \ a^{n-8} \ b^8 + \cdots$ For x < 1, $(1 \pm x)^n = 1 \pm n \ x + \frac{n \ (n-1)}{1 \cdot 2} \ x^2 \pm \frac{n \ (n-1) \ (n-2)}{1 \cdot 2 \cdot 3} \ x^8 + \cdots$ $\frac{1}{1 + x} = 1 - x + x^2 - x^8 + x^4 - \cdots$ $\frac{1}{1 - x} = 1 + x + x^2 + x^8 + x^4 + \cdots$ $\frac{1}{(1 - x)^2} = 1 + 2 \ x + 3 \ x^2 + 4 \ x^8 + 5 \ x^4 + \cdots$ $(1 + x)^{\frac{1}{2}} = 1 + \frac{1}{2} \ x - \frac{1}{8} \ x^2 + \frac{1}{16} \ x^8 - \frac{5}{128} \ x^4 + \cdots$ $\frac{1}{(1 + x)^{\frac{1}{2}}} = 1 - \frac{1}{2} \ x + \frac{3}{8} \ x^2 - \frac{5}{16} \ x^8 + \frac{35}{128} \ x^4 - \cdots$ $\frac{1}{(1 - x)^{\frac{1}{2}}} = 1 + \frac{1}{2} \ x + \frac{3}{8} \ x^2 + \frac{5}{16} \ x^8 + \frac{35}{128} \ x^4 + \cdots$

f. Exponential and logarithmic series.

For
$$-\infty < x < \infty$$
,
 $e^x = 1 + \frac{x}{1} + \frac{x^2}{1.2} + \frac{x^8}{1.2.3} + \frac{x^4}{1.2.3.4} + \dots$

The number e is the base of the natural or "Napierian" system of logarithms. For x = +1, the above series gives

 $e = 2.718281828459\ldots$

In the natural system the following series hold with the limitations indicated :

$$a^{x} = \mathbf{I} + \frac{\log a}{\mathbf{I}} x + \frac{(\log a)^{2}}{\mathbf{I} \cdot 2} x^{2} + \frac{(\log a)^{8}}{\mathbf{I} \cdot 2 \cdot 3} x^{8} \dots$$

$$- \infty < x < \infty;$$

$$\log (\mathbf{I} + x) = x - \frac{x^{2}}{2} + \frac{x^{8}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots$$

$$x \le \mathbf{I};$$

$$\log (\mathbf{I} - x) = -x - \frac{x^{2}}{2} - \frac{x^{8}}{3} - \frac{x^{4}}{4} - \frac{x^{5}}{5} - \dots$$

$$x < \mathbf{I};$$

$$\log x = 2 \left\{ \frac{x - \mathbf{I}}{x + \mathbf{I}} + \frac{1}{3} \left(\frac{x - \mathbf{I}}{x + \mathbf{I}} \right)^{3} + \frac{1}{5} \left(\frac{x - \mathbf{I}}{x + \mathbf{I}} \right)^{5} + \frac{1}{7} \left(\frac{x - \mathbf{I}}{x + \mathbf{I}} \right)^{7} + \dots \right\}$$

$$0 < x < \infty;$$

$$\log \frac{x + y}{x} = 2 \left\{ \frac{y}{2x + y} + \frac{1}{3} \left(\frac{y}{2x + y} \right)^{8} + \frac{1}{5} \left(\frac{y}{2x + y} \right)^{5} + \dots \right\}$$

$$y^{2} < (2x + y)^{2}.$$

g. Relations of natural logarithms to other logarithms.

B = base of any system, N = any number, $L = \log N \text{ to base } B = \log_B N,$ $l = \log N \text{ to base } e = \log_e N.$

Then

$$N = e^{l} = B^{L},$$

$$L = l \log_{B} e = l / \log_{e} B,$$

 $\log_{B}e = r/\log_{e}B = \mu$, say, which is called the *modulus* of the system whose base is B. In the common, or Briggean system,

$$\mu = \log_{10}e = 0.43429448....$$
$$\log \mu = 9.6377843 - 10.$$

2. TRIGONOMETRIC FORMULAS.

Function.	1st Quadrant.	2d Quadrant.	3d Quadrant.	4th Quadrant.
sine	+	+		-
cosine	+	—		+
tangent	+		+	-
cotangent	,++	-	+	

a. Signs of trigonometric functions.

b. Values of functions for special angles.

	o°	90°	180°	270 ⁰	360°	30°	45°	60°
sine	0	+ 1	0	— r	0	 12	$\frac{1}{2}\sqrt{2}$	<u>1</u> √3
cosine	+ 1	0	— I	o	+ 1	<u>1</u> √3	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$
tangent	o	00	o	8	o	$\frac{1}{3}\sqrt{3}$	I	\checkmark_3
cotangent	8	0	8	ο	8	\checkmark_3	I	₃ √3

c. Fundamental formulas.

 $\sin^{2} a + \cos^{2} a \equiv I, \qquad \tan a \cot a \equiv I, \\ \cos a \sec a \equiv I, \qquad \sin a \csc a \equiv I, \\ \tan a = \frac{\sin a}{\cos a}, \qquad \cot a = \frac{\cos a}{\sin a}, \\ I + \tan^{2} a = \frac{I}{\cos^{2} a} = \sec^{2} a, \qquad I + \cot^{2} a = \frac{I}{\sin^{2} a} = \csc^{2} a, \\ \operatorname{versed} \sin a = I - \cos a.$

d. Formulas involving two angles. $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$, $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta.$ $\tan (\alpha \pm \beta) = (\tan \alpha \pm \tan \beta)/(1 \mp \tan \alpha \tan \beta),$ $\cot (a \pm \beta) = (\cot a \cot \beta \mp 1)/(\cot a \pm \cot \beta).$ $\sin \alpha + \sin \beta = 2 \sin \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2}(\alpha - \beta),$ $\sin a - \sin \beta = 2 \cos \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$ $\cos a + \cos \beta = 2 \cos \frac{1}{2}(a + \beta) \cos \frac{1}{2}(a - \beta),$ $\cos a - \cos \beta = -2 \sin \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$ $\tan \alpha \pm \tan \beta = \frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}$ $\cot \alpha \pm \cot \beta = \frac{\sin (\beta \pm \alpha)}{\sin \alpha \sin \beta}$ $2 \sin a \sin \beta = \cos (a - \beta) - \cos (a + \beta),$ $2\cos \alpha \cos \beta = \cos (\alpha - \beta) + \cos (\alpha + \beta),$ $2 \sin \alpha \cos \beta = \sin (\alpha - \beta) + \sin (\alpha + \beta).$ $\frac{\sin \alpha + \sin \beta}{\sin \alpha - \sin \beta} = \tan \frac{1}{2}(\alpha + \beta) \cot \frac{1}{2}(\alpha - \beta),$ $\frac{\cos a + \cos \beta}{\cos a - \cos \beta} = -\cot \frac{1}{2}(a + \beta) \cot \frac{1}{2}(a - \beta).$

e. Formulas involving multiple angles.

 $\sin 2 \ a = 2 \sin a \cos a,$ $\sin 3 \ a = 3 \sin a \cos^2 a - \sin^8 a.$ $\cos 2 \ a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a = 2 \cos^2 a - 1,$ $\cos 3 \ a = \cos^8 a - 3 \sin^2 a \cos a.$ $\tan \frac{1}{2} \ a = \frac{\sin a}{1 + \cos a} = \frac{1 - \cos a}{\sin a} = \left(\frac{1 - \cos a}{1 + \cos a}\right)^{\frac{1}{2}},$ $\tan 2 \ a = \frac{2 \tan a}{1 - \tan^2 a}, \qquad \cot 2 \ a = \frac{\cot^2 a - 1}{2 \cot a},$ $\sin a = \frac{2 \tan \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a}, \qquad \cos a = \frac{1 - \tan^2 \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a},$ $2 \sin^2 a = 1 - \cos 2 a, \qquad 2 \cos^2 a = 1 + \cos 2 a,$ $4 \sin^8 \ a = 3 \sin a - \sin 3 a, \qquad 4 \cos^8 a = 3 \cos a + \cos 3 a.$

f. Exponential values. Moivre's formula.

e = base of natural logarithms, $i = \sqrt{-1}, i^2 = -1, i^3 = -i, i^4 = 1, \text{ etc.}$ $\cos x = \frac{1}{2} (e^{ix} + e^{-ix}), \qquad \sin x = \frac{1}{2i} (e^{ix} - e^{-ix}),$ $\cos ix = \frac{1}{2} (e^{-x} + e^x), \qquad \sin ix = \frac{1}{21} (e^{-x} - e^x).$ $(\cos x \pm i \sin x)^m = \cos mx \pm i \sin mx.$

g. Values of functions in series.

For x in arc the following series hold within the limits indicated.

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots,$$

$$- \infty < x < + \infty.$$

$$\tan x = x + \frac{1}{3} x^3 + \frac{1}{25} x^5 + \frac{1}{315} x^7 + \dots,$$

$$\sec x = 1 + \frac{1}{3} x^2 + \frac{5}{24} x^4 + \frac{6}{120} x^6 + \dots,$$

$$- \frac{1}{2} \pi < x < + \frac{1}{2} \pi.$$

$$\cot x = \frac{1}{x} \left(1 - \frac{1}{3} x^2 - \frac{1}{45} x^4 - \frac{2}{345} x^6 - \dots \right),$$

$$\cos \varepsilon x = \frac{1}{x} \left(1 + \frac{1}{6} x^2 + \frac{7}{360} x^4 + \frac{3}{16120} x^5 + \dots \right),$$

$$\cos \varepsilon x = \frac{1}{x} \left(1 + \frac{1}{6} x^2 + \frac{3}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots,$$

$$- \pi < x < + \pi.$$

$$\arctan x = x - \frac{x^6}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots,$$

$$- 1 < x < + 1.$$

$$x = \sin x + \frac{1}{6} \sin^3 x + \frac{3}{40} \sin^5 x + \frac{1}{152} \sin^7 x + \dots,$$

$$x = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{3} \tan^5 x - \frac{1}{7} \tan^7 x + \dots,$$

$$- \frac{1}{4} \pi < x < + \frac{1}{4} \pi.$$

$$\log \sin x = \log x - \mu \left(\frac{1}{6} x^2 + \frac{1}{160} x^4 + \frac{1}{2835} x^6 + \dots \right),$$

$$x \text{ positive and } < \pi,$$

$$\mu = \text{ modulus of common logarithms. See p. xv.$$

$$\log \tan x = \log x + \mu \left(\frac{1}{3} x^2 + \frac{7}{30} x^4 + \frac{2623}{2535} x^6 + \dots \right),$$

$$x \text{ positive and } < \frac{1}{2} \pi.$$

h. Conversion of arcs into angles and angles into arcs.

Denote by x° , x', and x'' respectively the angle (in degrees, minutes, or seconds) corresponding to the arc x. Then by equality of ratios

$$\frac{360^{\circ}}{x^{\circ}} = \frac{360 \times 60'}{x'} = \frac{360 \times 60 \times 60''}{x''} = \frac{2 \pi}{x},$$
$$x^{\circ} = x \frac{180^{\circ}}{\pi},$$
$$x' = x \frac{180 \times 60'}{\pi},$$
$$x'' = x \frac{180 \times 60 \times 60''}{\pi}.$$

whence

USEFUL FORMULAS.

xviii

Then

3.

*** * *** .

$$\frac{180^{\circ}}{\pi} = \rho^{\circ} = \text{number of degrees in the radius,}$$
$$\frac{180 \times 60'}{\pi} = \rho' = \text{number of minutes in the radius,}$$
$$\frac{180 \times 60 \times 60''}{\pi} = \rho'' = \text{number of seconds in the radius.}$$
$$x^{\circ} = x \rho^{\circ}, \quad x' = x \rho', \quad x'' = x \rho''.$$
$$\rho^{\circ} = 57.^{\circ}2957795, \quad \log \rho^{\circ} = 1.75812263, \\\rho' = 3437.'74677, \quad \log p' = 3.53627388, \\\rho'' = 206264.''806, \quad \log \rho'' = 5.31442513.$$

FORMULAS FOR SOLUTION OF PLANE TRIANGLES.
a, *b*, *c* = sides of triangle,
a, *b*, *y* = angles opposite to *a*, *b*, *c*, respectively,
A = area of triangle,
r = radius of inscribed circle,
R = median ef simulations

R = radius of circumscribed circle, $s = \frac{1}{2} (a + b + c).$

$$s = \frac{1}{2} \left(a + b + c \right)$$

$$\frac{a}{\sin a} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2 R.$$

$$a = b \cos \gamma + c \cos \beta, \quad b = c \cos a + a \cos \gamma, \quad c = a \cos \beta + b \cos a,$$

$$r = 4 R \sin \frac{1}{2} a \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma = \frac{a b c}{4 R s};$$

$$(a + b) \cos \frac{1}{2} (a + \beta) = c \cos \frac{1}{2} (a - \beta),$$

$$(a - b) \sin \frac{1}{2} (a + \beta) = c \sin \frac{1}{2} (a - \beta).$$

$$\frac{a + b}{a - b} = \frac{\tan \frac{1}{2} (a + \beta)}{\tan \frac{1}{2} (a - \beta)} = \frac{\tan \frac{1}{2} \gamma}{\tan \frac{1}{2} (a - \beta)};$$

$$a^{2} = b^{2} + c^{2} - 2 b c \cos a = (b + c)^{2} - 4 b c \cos^{2} \frac{1}{2} a.$$

$$\sin \frac{1}{2} a = \sqrt{\frac{(s - b) (s - c)}{b c}}, \quad \cos \frac{1}{2} a = \sqrt{\frac{s(s - a)}{b c}};$$

$$\tan \frac{1}{2} a = \sqrt{\frac{(s - b) (s - c)}{s \sin a}} = \frac{r}{s - a};$$

$$r = \sqrt{\frac{(s - a) (s - b) (s - c)}{s}};$$

$$A = \frac{1}{2} a b \sin \gamma = \frac{a^{2} \sin \beta \sin \gamma}{2 \sin a} = 2 R^{2} \sin a \sin \beta \sin \gamma$$

$$= r^{2} \cot \frac{1}{2} a \cot \frac{1}{2} \beta \cot \frac{1}{2} \gamma = \sqrt{s (s - a) (s - b) (s - c)};$$

$$= r s = \frac{1}{4} a b c / R.$$

Put

In right angled triangles let

a := altitude,b := base,c := hypothenuse, $<math>\gamma := 90^{\circ}.$

Then

$$a = c \sin a = c \cos \beta = b \tan a = b \cot \beta,$$

$$b = c \sin \beta = c \cos a = a \tan \beta = a \cot a.$$

$$A = \frac{1}{2} a b = \frac{1}{2} a^2 \cot a = \frac{1}{2} b^2 \tan a = \frac{1}{2} c^2 \sin 2 a$$
.

Given.	Sought.	Formula.
a, b, c	a	$\sin \frac{1}{2} a = \sqrt{\frac{(s-b)(s-c)}{bc}}, s = \frac{1}{2} (a+b+c),$
		$\cos \frac{1}{2} a = \sqrt{\frac{s(s-a)}{bc}},$
		$\tan \frac{1}{2} \alpha = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$
	A	$A = \sqrt{s(s-a)(s-b)(s-c)}.$
a, b, a	β	$\sin\beta = b\sin a/a.$
		When $a > b$, $\beta < 90^{\circ}$ and but one value results. When $b > a$, β has two values.
	γ	$\gamma = 180^{\circ} - (a + \beta).$
	c	$c = a \sin \gamma / \sin a$.
	A	$A = \frac{1}{2} a b \sin \gamma.$
a, a, β		$b = a \sin \beta / \sin a.$
· · · · · · · · · · · · · · · · · · ·		$\gamma = 180^{\circ} - (\alpha + \beta).$
		$c = a \sin \gamma / \sin a = a \sin (a + \beta) / \sin a.$
		$A = \frac{1}{2} a b \sin \gamma = \frac{1}{2} a^2 \sin \beta \sin \gamma / \sin a.$
a, b, y	a	$\tan a = \frac{a \sin \gamma}{b - a \cos \gamma}$
		$\frac{1}{2}(\alpha+\beta)=90^{\circ}-\frac{1}{2}\gamma,$
		$\tan \frac{1}{2}(a-\beta) = \frac{a-b}{a+b} \cot \frac{1}{2} \gamma.$
		$c = (a^2 + b^2 - 2 \ a \ b \cos \gamma)^{\frac{1}{2}},$
		$ = \{ (a + b)^2 - 4 \ a \ b \ \cos^2 \frac{1}{2} \ \gamma \}^{\frac{1}{2}}, \\ = \{ (a - b)^2 + 4 \ a \ b \ \sin^2 \frac{1}{2} \ \gamma \}^{\frac{1}{2}}, $
		$= \frac{(a-b)}{(a-b)} + \frac{1}{4} \frac{a}{a} \frac{b}{(a-b)} + \frac{1}{2} \frac{\gamma}{a} \frac{b}{b} \sin \frac{1}{2} \frac{\gamma}{(a-b)},$
		$= a \sin \gamma / \sin a.$
	A	$A = \frac{1}{2} a \ b \sin \gamma.$

Table for solution of oblique triangles.

4. FORMULAS FOR SOLUTION OF SPHERICAL TRIANGLES.

a. Right angled spherical triangles.

a, b, c = sides of triangle, c being the hypotenuse, a, β , γ = angles opposite to a, b, c, respectively, $\gamma = 90^{\circ}$.

 $\begin{array}{ll} \sin a = \sin c \sin a, & \sin b = \sin c \sin \beta, \\ \tan a = \tan c \cos \beta, & \tan b = \tan c \cos a, \\ = \sin b \tan a, & = \sin a \tan \beta; \\ \cos a = \cos a \sin \beta, & \cos \beta = \cos b \sin a; \end{array}$

 $\cos c = \cos a \cos b = \cot a \cot \beta.$

b. Oblique angled triangles.

a, b, c = sides of triangle, a, β , $\gamma = angles opposite to a, b, c, respectively,$ $<math>s = \frac{1}{2} (a + b + c),$ $\sigma = \frac{1}{2} (a + \beta + \gamma),$ $\epsilon = a + \beta + \gamma - 180^{\circ} = \text{spherical excess},$ S = surface of triangle on sphere of radius r. $\frac{\sin a}{\sin a} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$ $\cos a = \cos b \cos c + \sin b \sin c \cos a,$ $\sin^2 \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\sin \beta \sin \gamma}, \quad \cos^2 \frac{1}{2} a = \frac{\cos (\sigma - \beta) \cos (\sigma - \gamma)}{\sin \beta \sin \gamma},$ $\tan^2 \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\cos (\sigma - \beta) \cos (\sigma - \gamma)}.$ $\sin^2 \frac{1}{2} a = \frac{\sin (s - b) \sin (s - c)}{\sin b \sin c}, \quad \cos^2 \frac{1}{2} a = \frac{\sin s \sin (s - a)}{\sin b \sin c},$ $\tan^2 \frac{1}{2} a = \frac{\sin (s - b) \sin (s - c)}{\sin b \sin c}.$

$$\cot \frac{1}{2} \epsilon = \frac{\cot \frac{1}{2} a \cot \frac{1}{2} b + \cos \gamma}{\sin \gamma}$$

 $\tan^2 \frac{1}{4} \epsilon = \tan \frac{1}{2} s \tan \frac{1}{2} (s-a) \tan \frac{1}{2} (s-b) \tan \frac{1}{2} (s-c).$

$$S = \frac{\epsilon}{180^\circ} \pi r^2.$$

Napier's analogies.

 $\tan \frac{1}{2} (a+b) = \frac{\cos \frac{1}{2} (a-\beta)}{\cos \frac{1}{2} (a+\beta)} \tan \frac{1}{2} c, \quad \tan \frac{1}{2} (a-b) = \frac{\sin \frac{1}{2} (a-\beta)}{\sin \frac{1}{2} (a+\beta)} \tan \frac{1}{2} c,$ $\tan \frac{1}{2} (a+\beta) = \frac{\cos \frac{1}{2} (a-b)}{\cos \frac{1}{2} (a+b)} \cot \frac{1}{2} \gamma, \quad \tan \frac{1}{2} (a-\beta) = \frac{\sin \frac{1}{2} (a-b)}{\sin \frac{1}{2} (a+b)} \cot \frac{1}{2} \gamma.$

Gauss's formulas.

 $\cos \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$ $\sin \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma,$ $\cos \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$ $\sin \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma.$

5. ELEMENTARY DIFFERENTIAL FORMULAS.

a. Algebraic.

 $u, v, w, \ldots =$ variables subject to differentiation, $a, b, c, \ldots =$ constants.

$$d(a + u) = du, \quad d(a \ u) = a \ du,$$

$$d(u + v + w + \dots) = d \ u + d \ v + d \ w + \dots,$$

$$d(u \ v) = u \ dv + v \ du,$$

$$d(u \ v \ w \dots) = \left(\frac{du}{u} + \frac{dv}{v} + \frac{dw}{w} + \dots\right) u \ v \ w \dots,$$

$$d\left(\frac{u}{v}\right) = \frac{v \ du - u \ dv}{v^2} = \frac{du}{v} - \frac{u \ dv}{v^2},$$

$$d\left(\frac{a + b \ u}{h + g \ u}\right) = \frac{b \ h - a \ g}{(h + g \ u)^2} \ du.$$

$$dv^n = n \ v^{n-1} \ dv, \qquad d\sqrt{v} = \frac{dv}{2 \ \sqrt{v}},$$

$$da^v = a^v \log a \ dv, \qquad de^v = e^v \ dv$$

$$(e = \text{base of natural logarithms}),$$

$$d \log v = dv/v.$$

$$dF(u, v, w \dots) = \frac{\partial F}{\partial u} du + \frac{\partial F}{\partial v} dv + \frac{\partial F}{\partial w} dw + \dots$$

b. Trigonometric and inverse trigonometric.

$$d\sin x = \cos x \, dx, \qquad d\cos x = -\sin x \, dx,$$

$$d\tan x = \sec^2 x \, dx, \qquad d\cot x = -\csc^2 x \, dx,$$

$$d\sin x = \sec^2 x \sin x \, dx, \qquad d\cot x = -\csc^2 x \cos x \, dx.$$

$$d\log \sin x = \cot x \, dx, \qquad d\log \cos x = -\tan x \, dx.$$

$$d\arg \sin x = \pm \frac{dx}{\sqrt{1 - x^2}}, \qquad d\arg \cos x = \mp \frac{dx}{\sqrt{1 - x^2}},$$

$$d\arg \tan x = \frac{dx}{1 + x^2}, \qquad d\arg \cot x = -\frac{dx}{1 + x^2}$$

6. TAYLOR'S AND MACLAURIN'S SERIES.

a. Taylor's series.

If u = f(x + h), any finite and continuous function of x + h, h being an arbitrary increment to x; and if du/dx, d^2u/dx^2 , . . . are finite and determinate,

$$u = f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + f'''(x)\frac{h^3}{1.2.3} + \cdots$$

where f(x), f''(x), f''(x), ... are the values of f(x + h), du/dx, d^2u/dx^2 , ... when h = 0. This is Taylor's series or theorem. The remainder after the first *n* terms in *h* is expressed by the definite integral

$$\frac{1}{1.2.3...n} \int_{0}^{h} f^{n+1} (x+h-z) z^{n} dz$$

b. Maclaurin's series.

If in Taylor's series we make x = 0, and h = x, the result is

$$u = f(x) = f(0) + f'(0) x + f''(0) \frac{x^2}{1 \cdot 2} + f'''(0) \frac{x^3}{1 \cdot 2 \cdot 3} + \dots,$$

where f(o), f'(o), f''(o), ... are the values of f(x), du/dx, d^2u/dx^2 , ... when x = o. This is Maclaurin's series or theorem. The remainder after the first *n* terms in *x* is expressed by the definite integral

$$\frac{1}{1\cdot 2\cdot 3\cdots n}\int_{0}^{x}f^{n+1}(x-z) z^{n} dz.$$

c. Example of Taylor's series.

 $u = f(x+h) = \log (x+h).$

$$f(x) = \log x,$$

$$\frac{du}{dx} = \frac{1}{x+h}, \qquad f'(x) = +x^{-1},$$

$$\frac{d^2u}{dx^2} = -\frac{1}{(x+h)^{2t}} \qquad f''(x) = -x^{-2},$$

$$\frac{d^8u}{dx^8} = +\frac{2}{(x+h)^{8t}} \qquad f'''(x) = +2x^{-8},$$

Hence for common logarithms, μ being the modulus,

 $\log (x + h) = \log x + \mu (x^{-1}h - \frac{1}{2}x^{-2}h^2 + \frac{1}{3}x^{-3}h^3 - \ldots),$ and the sum of the remaining terms is

$$-\frac{\mu}{1\cdot 2\cdot 3}\int_{0}^{h}\frac{2\cdot 3}{(x+h-z)^{4}}z^{8} dz.$$

Since x is the least value of (x + h - z) within the limits of this integral, the sum of the remaining terms is negative, and numerically

$$< \frac{1}{4}\mu\left(\frac{\hbar}{x}\right)^4$$
.

If, for example, $(\hbar/x) = 1/100$, the remainder in question is less than $\frac{1}{4} \times 0.434 \times 10^{-8}$, or about one unit in the ninth place of decimals.

d. Example of Maclaurin's series.

$$u=f(x)=\sin x.$$

$$f(o) = o,$$

$$\frac{du}{dx} = \cos x,$$

$$f'(o) = + I,$$

$$\frac{d^{2}u}{dx^{2}} = -\sin x,$$

$$f''(o) = o,$$

$$\frac{d^{3}u}{dx^{3}} = -\cos x,$$

$$f''(o) = - I,$$

....

Hence

$$f(x) = \sin x = x - \frac{x^8}{1 \cdot 2 \cdot 3} + \frac{x^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots$$

and the sum of the remaining terms is

$$-\frac{\mathbf{I}}{5!}\int\limits_{0}^{x}\sin\left(x-z\right)z^{5}\,dz.$$

If g is the greatest value of sin (x - z) within the limits of this integral the remainder in question is negative and numerically

$$< \frac{g}{6} \times \frac{1}{5!} x^6.$$

If, for example, $x = \pi/6$ (the arc of 30°), $g = \frac{1}{2}$, and the remainder is numerically less than 0.0000143.

7. ELEMENTARY FORMULAS FOR INTEGRATION.

a. Indefinite integrals.

$$\int a dx = a \int dx = ax + C.$$

$$\int f(x) \, dx + \int \phi(x) \, dx = \int \{f(x) + \phi(x)\} \, dx.$$

If
$$x = \phi(y)$$
, and $dx = \phi'(y) dy$,

$$\int f(x) dx = \int f\{\phi(y)\} \phi'(y) dy.$$

$$\frac{d}{dy} \int f(x, y) dx = \int \frac{df(x, y)}{dy} dx.$$

Since
$$d(uv) = udv + vdu$$
,

$$\int udv = uv - \int vdu$$
; and
if $u = f(x)$ and $v = \phi(x)$,

$$\int f(x) \frac{d\phi(x)}{dx} dx = f(x) \phi(x) - \int \phi(x) \frac{df(x)}{dx} dx.^*$$

$$\int dx \int f(x, y) dy = \int dy \int f(x, y) dx.$$

$$\int dx \int f(x) dx = x \int f(x) dx - \int xf(x) dx.$$

$$\int x^x dx = \frac{1}{n+1} x^{n-1} + C.$$

$$\int \frac{dx}{x^n} = -\frac{1}{n-1} x^{-(n-1)} + C, \quad n > 1.$$

$$\int (a + b x)^n dx = \frac{(a + bx)^{n+1}}{(n+1)b} + C.$$

$$\int \frac{dx}{x^2} = \log x + C, \quad \int \frac{dx}{a + bx} = b^{-1} \log (a + bx).$$

$$\int \frac{dx}{x^2} = -\frac{1}{x} + C, \quad \int \frac{dx}{(a + bx)^2} = -\frac{1}{b(a + bx)} + C.$$

$$\int \frac{dx}{1+x^2} = \arctan x + C, \quad \int \frac{-dx}{1+x^2} = \operatorname{arc} \cot x + C.$$

$$\int \frac{dx}{1+x^2} = \operatorname{arc} \tan x + C, \quad \int \frac{dx}{x^2-1} = \frac{1}{2} \log \frac{x-1}{x+1} + C.$$

$$\int \frac{dx}{a+bx^2} = (ab)^{-1} \operatorname{arc} \tan (b/a)^3 x + C, \text{ for } a \text{ and } b \text{ both negative,}$$

$$= \frac{1}{2} (-ab)^{-1} \log \frac{(-ab)^3 - bx}{(a-b)^3 + bx} + C, \text{ for } a - b^2 > 0,$$

$$= \frac{1}{2} (b^2 - ac)^{-1} \log \frac{(b^2 - ac)^3 - b}{(b^2 - ac)^3 + b} + C.$$

$$\int (a^2 - x^3)^3 dx = \frac{1}{2} x (a^4 - x^3)^4 + \frac{1}{2} a \log (x + (a + x^2)^3) + C.$$

* This is the formula for integration by parts.

† Natural logarithms are used in this and the following integrals. For relation of natural to common logarithms see section I, g.

xxiv

$$\begin{split} \int (a + z \, bx + cx^3)^4 \, dx &= \frac{1}{2} \, (b + cx) \, (a + z \, bx + cx^3)^{1/2} \\ &+ \frac{1}{2} \, (ac - b^3)/c \int (a + z \, bx + cx^3)^{-1} \, dx + C. \\ \int (a + bx)^{-1} \, dx &= z \, (a + bx)^{1/2} + C. \\ \int (a + \betax) \, (a + bx)^{-1} \, dx &= \frac{1}{2} \, (3 \, ab - 2 \, a\beta + \beta \, bx) \, (a + bx)^{1/2^3} + C. \\ \int (a^3 - x^3)^{-1} \, dx &= \pm arc \sin \frac{x}{a} + C, \\ &= \mp arc \cos \frac{x}{a} + C, \\ &= z \, arc \tan \left(\frac{a + x}{a - x}\right)^4 + C. \\ \int (a + x^3)^{-1} \, dx &= \log \, \{x + (a + x^3)^3\} + C. \\ \int (a + x^3)^{-1} \, dx &= \log \, \{x + (a + x^3)^3\} + C. \\ \int (a + x^3)^{-1} \, dx &= \frac{1}{\sqrt{c}} \, \log \, \{b + cx + (ac + bcx + c^3x^3)^4\} + C, \, for \, c > 0, \\ &= -\frac{x}{\sqrt{-c}} \, arc \sin \frac{b + cx}{(b^3 - ac)^3} + C, \, for \, c < 0. \\ \int a^2 \, dx &= a^2/\log a + C, \quad \int c^2 \, dx &= c^2 + C. \\ \int \log x \, dx &= x \log x - x + C. \\ \int \log x \, dx &= x \log x - x + C. \\ \int (\log x)^n x^{-1} \, dx &= \frac{1}{n + 1} \, (\log x)^{n+1} + C. \\ \int \sin^n x \, dx &= -\cos x + C, \quad \int \cos^n x \, dx &= \sin x + C. \\ \int \sin^n x \, dx &= -\log \cos x + C, \quad \int \cos^n x \, dx &= \sin x + C. \\ \int \sin^n x \, dx &= -\log \cos x + C, \quad \int \cot x \, dx &= \log \sin x + C. \\ \int \frac{dx}{\sin^n x} &= -\cot x + C, \quad \int \frac{dx}{\cos^n x} &= \log \tan \frac{1}{2} \, (x + \frac{1}{2} \, \pi) + C. \\ \int \frac{dx}{\sin^n x} &= -\cot x + C, \quad \int \frac{dx}{\cos^n x} &= \log \tan \frac{1}{2} \, (x + \frac{1}{2} \, \pi) + C. \\ \int e^{ax} \sin bx \, dx &= \frac{a \sin bx - b \cos bx}{a^2 + b^3} e^{ax} + C. \\ \int arc \sin x \, dx &= x \arcsin x \pm (1 - x^3)^4 + C. \\ \int arc \sin x \, dx &= x \arctan x - \frac{1}{2} \log (1 + x^3) + C. \\ \int arc \cot x \, dx &= x \arctan x - \frac{1}{2} \log (1 + x^3) + C. \\ \int arc \cot x \, dx &= x \arctan x + \frac{1}{2} \log (1 + x^3) + C. \end{cases}$$

b. Definite Integration.

$$\int_{a}^{n} \phi(x) dx = \int_{a}^{b} \phi(x) dx + \int_{b}^{c} \phi(x) dx + \dots + \int_{m}^{n} \phi(x) dx.$$
$$\int_{a}^{b} \phi(x) dx = -\int_{b}^{a} \phi(x) dx.$$
$$\int_{0}^{a} \phi(x) dx = \int_{0}^{a} \phi(x) dx.$$

If $\phi(x) = \phi(-x)$, an "even function" of x,

$$\int_{0}^{a} \phi(x) dx = \int_{-a}^{0} \phi(x) dx = \frac{1}{2} \int_{-a}^{a} \phi(x) dx.$$

If $\phi(x) = -\phi(-x)$, an "odd function" of x, $\int_{-a}^{0} \phi(x) \, dx = \int_{0}^{a} \phi(x) \, dx$, and $\int_{-a}^{0} \phi(x) \, dx = 0$.

If A be the greatest and B the least value of $\phi(x)$ within the limits a and b,

$$A(b-a) > \int_{a}^{b} \phi(x) dx > B(b-a),$$

a formula useful in determining approximate values of integrals. See, e. g., section 6, d.

4

.

If
$$u = \int_{a}^{b} \phi(x) dx$$
,

$$\frac{du}{da} = -\phi(a), \qquad \frac{du}{db} = \phi(b).$$

$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{2}\pi.$$

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \int_{1}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{2}\pi.$$

$$\int_{0}^{\infty} \frac{dx}{a+bx^{2}} = \frac{1}{2}\pi/\sqrt{(ab)}, \qquad \int_{0}^{a} \frac{dx}{\sqrt{a^{2}-x^{2}}} = \frac{1}{2}\pi.$$

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi}, \qquad \int_{0}^{\infty} e^{-a^{2}x^{2}} dx = \frac{1}{2} \sqrt{(\pi/a^{2})}.$$

$$\int_{0}^{\infty} e^{-a^{2}x^{2}} x^{2n} dx = 1 \cdot 3 \cdot 5 \dots (2 \ n-1) \ a^{-\nu} (2 \ a)^{-(n+1)} \sqrt{\pi}.$$

$$\int_{0}^{\infty} e^{-ax} x^{-1} dx = \sqrt{(\pi/a)}.$$

$$\int_{0}^{\pi} \sin mx \sin nx \ dx = \int_{0}^{\pi} \cos mx \cos nx \ dx = 0.$$

when m and n are unequal integers.

 $\int_{0}^{\pi} \sin mx \cos nx \, dx = \frac{2 m}{m^2 - n^2} \text{ for } m \text{ and } n \text{ integers and } m - n \text{ odd,}$ = 0, for m and n integers and m - n even.

$$\int_{0}^{\pi} \sin^{2} mx \, dx = \int_{0}^{\pi} \cos^{2} mx \, dx = \frac{1}{2} \pi, \text{ for } m \text{ an integer.}$$

$$\int_{0}^{\frac{1}{2}\pi} \int_{0}^{\frac{1}{2}\pi} \sin^{n} x \, dx = \int_{0}^{\frac{1}{2}\pi} \cos^{n} x \, dx = \int_{0}^{1} (1 - x^{2})^{\frac{1}{2}(n-1)} \, dx.$$

$$\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} \, dx = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} \sin x^{2} \, dx = \int_{0}^{\infty} \cos x^{2} \, dx = \frac{1}{2} \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} e^{-a^{2} x^{2}} \cos 2bx \, dx = \frac{1}{2} e^{-(b/a)^{2}} \sqrt{(\pi/a)}.$$

$$\int_{0}^{\infty} e^{-a^{2} x^{2}} \sin 2bx \, dx = 0.$$

I. LINES.

a. In a circle.

r = radius of circle,

c =length of any chord,

s =arc subtended by c,

a = angle corresponding to s,

h = height of arc s above c, or perpendicular distance from middle point of arc to chord.

Circumference =
$$2 \pi r$$
,
 $\pi = 3.14159265$, $\log \pi = 0.49714987$,
 $2 \pi = 6.28318531$, $\log 2 \pi = 0.79817987$.
 $c = 2 r \sin \frac{1}{2} a$, $s = r a$.

Length of perpendicular from center on chord

$$= r \cos \frac{1}{2} a$$

$$= (r^{2} - \frac{1}{4} c^{2})^{\frac{1}{2}}$$

$$= r \left\{ 1 - \frac{1}{2} \left(\frac{c}{2r} \right)^{2} - \frac{1}{8} \left(\frac{c}{2r} \right)^{4} - \frac{1}{16} \left(\frac{c}{2r} \right)^{6} - \dots \right\},$$

$$h = r (1 - \cos \frac{1}{2} a)$$

$$= 2 r \sin^{2} \frac{1}{4} a$$

$$= r - (r^{2} - \frac{1}{4} c^{2})^{\frac{1}{4}}$$

$$= \frac{1}{8} r \left\{ \left(\frac{c}{r} \right)^{2} + \frac{1}{16} \left(\frac{c}{r} \right)^{4} + \frac{1}{128} \left(\frac{c}{r} \right)^{6} + \dots \right\},$$

$$s - c = \frac{1}{24} s (a^{2} - \frac{1}{80} a^{4} + \dots)$$

$$= \frac{8}{5} \frac{h^{2}}{s} \left\{ 1 + \frac{28}{15} \left(\frac{h}{s} \right)^{2} + \dots \right\},$$

$$a = 8 \left\{ \frac{h}{s} + \frac{4}{3} \left(\frac{h}{s} \right)^{8} + \dots \right\}.$$

b. In regular polygon.

r = radius of inscribed circle, R = radius of circumscribed circle, n = number of sides, s = length of any side, $\beta = \text{angle subtended by } s,$ p = perimeter of polygon. $\beta = 360^{\circ}/n,$ $s = 2 r \tan \frac{1}{2} \beta = 2 R \sin \frac{1}{2} \beta,$ $p = n s = 2 n r \tan \frac{1}{2} \beta = 2 n R \sin \frac{1}{2} \beta.$

See table under c, below.

c. In ellipse.

a = semi-axis major, b = semi-axis minor, $e = \text{eccentricity} = (1 - b^2/a^2)^{\frac{1}{2}},$ P = perimeter of ellipse, n = (a - b)/(a + b) $= \frac{1 - \sqrt{1 - e^2}}{1 + \sqrt{1 - e^2}} = \frac{e^2}{4} + \frac{e^4}{8} + \frac{5e^6}{64} + \cdots$

Distance from centre to focus = a e, Distance from focus to extremity of major axis = a (1 - e), Distance from focus to extremity of minor axis = a.

 $P = \pi (a + b) (1 + \frac{1}{4} n^2 + \frac{1}{64} n^4 + \frac{1}{256} n^6 + \ldots)$

 $=\pi (a + b) q$, say, where q stands for the series in n. The values of q corresponding to a few values of n are: --

n	9	12	9
0	1.0000	0.5	1.0635
0.1	1.0025	0.6	1.0922
0.2	1.0100	0.7	1.1267
0.3	1.0226	o.8	1.1677
0.4	1.0404	0.9	1.2155
		1.0	1.2732

2. Areas.

a. Area of plane triangle.

(See table on p. xix.)

b. Area of Trapezoid.

 $b_1 =$ upper base of trapezoid,

 $b_2 =$ lower base of trapezoid,

a = altitude of trapezoid, or perpendicular distance between bases.

Area = $\frac{1}{2}(b_1 + b_2)a$.

MENSURATION.

c. Area of regular polygon.

A = area,

r, R = radii of inscribed and circumscribed circles,

s = length of any side,

n = number of sides,

 β = angle subtended by $s = 360^{\circ}/n$.

 $A = n r^{2} \tan \frac{1}{2} \beta = \frac{1}{2} n R^{2} \sin \beta = \frac{1}{4} n s^{2} \cot \frac{1}{2} \beta.$

TABL	E OF	VALUES.	

n	β	A	A	R	S
3	120°	0.4330 s ²	1.2990 R ²	0.5774 s	1.7321 R
4	90	1,0000	2.0000	0.7071	1.4142
5	72	1.7205	2.3776	0.8507	1.1756
6	60	2.5981	2.5981	1.0000	1.0000
7	51 3	3.6339	2.7364	1.1524	0.8678
8	45	5.8284	2.8284	1.3066	0.7654
9	40	6.1818	2.8925	1.4619	0.6840
10	36	7.6942	2.9389	1.6180	0.6180
II	3 ² 1 ⁸ 1	9.3656	2.9735	1.7747	0.5635
12	30	11.1962	3.0000	1.93 19	0.5176
13	28 ₁₃	13.1858	3.0207	2.0893	0.4786
14	25号	15.3345	3.0372	2.2470	0.4450
15	24	17.6424	3.0505	2.4049	0.4158
16	221	20.1094	3.0615	2.5629	0.3902
		l			

d. Area of circle, circular annulus, etc.

- r = radius of circle,
- d =diameter,
- $\alpha =$ angle of any sector,
- $r_1, r_2 =$ smaller and greater radii of an annulus.

Area of circle = $\pi r^2 = \frac{1}{4} \pi d^2$, $\pi = 3.14159265$, log $\pi = 0.49714987$.

Area of sector = $a r^2$, for a in arc, = $\pi r^2 (a/360)$, for a in degrees.

Area of annulus = $\pi (r_2^2 - r_1^2)$.

e. Area of ellipse.

a, b = semi axes respectively e = eccentricity = $(a^2 - b^2)^{\frac{1}{2}}/a$ = $\{(a + b) (a - b)\}^{\frac{1}{2}}/a$.

Area of ellipse =
$$\pi a b$$
,
= $\pi a^2 \sqrt{1 - e^2}$,
= $\pi a^2 \cos \phi$, if $e = \sin \phi$.

f. Surface of sphere, etc.

r = radius of sphere,

 $\phi_1, \phi_2 =$ latitudes of parallels bounding a zone, $\epsilon =$ spherical excess of a spherical triangle = sum of spherical angles less 180°, Total surface = $4 \pi r^2$. Surface of zone = $2 \pi r^2 (\sin \phi_2 - \sin \phi_1)$. $= 4 \pi r^2 \cos \frac{1}{2} (\phi_2 + \phi_1) \sin \frac{1}{2} (\phi_2 - \phi_1).$ Surface of spherical triangle $= r^2 \epsilon$, for ϵ in arc, $= r^2 \epsilon / \rho''$, for ϵ in seconds. $\rho'' = 206264.8''$ $\log \rho'' = 5.31442513.$ g. Surface of right cylinder. r = radius of bases of cylinder, h = altitude of cylinder. Area cylindrical surface = $2 \pi r h$. Total surface = $2 \pi r (r + h)$. h. Surface of right cone. r = radius of base. h =altitude, s =slant height. Conical surface = $\pi r s = \pi r (h^2 + r^2)^{\frac{1}{2}}$ Total surface $= \pi r (s + r)$. i. Surface of spheroid. a, b = semi axes, $e = \text{eccentricity} = \{(a + b) (a - b)\}^{\frac{1}{2}}/a$ Surface of oblate spheroid = $2 \pi a^2 \left\{ 1 + \frac{1-e^2}{2e} \log \left(\frac{1+e}{1-e} \right) \right\}^*$ $= 4 \pi a^2 (1 - \frac{1}{3} e^2 - \frac{1}{15} e^4 - \frac{1}{35} e^6 - \dots).$ Surface of prolate spheroid = $2 \pi a b \left\{ (\mathbf{I} - e^2)^{\frac{1}{2}} + \frac{\operatorname{arc sin} e}{e} \right\}$ $= 4 \pi a b (1 - \frac{1}{6} e^2 - \frac{1}{40} e^4 - \frac{1}{12} e^6 - \dots).$

* The logarithm in this formula refers to the natural or "Napierian" system. For areas of zones and quadrilaterals of an oblate spheroid, see pp. 1-lii.

3. VOLUMES.

a. Volume of prism.

A = area of base, h = altitude, V = volume.

V = A h.

For an oblique triangular prism whose edges a, b, c are inclined at an angle a to the base,

 $V = \frac{1}{3} (a + b + c) A \sin a.$

b. Volume of pyramid.

A = area of base, h = altitude, V = volum c_{e}

 $V = \frac{1}{3} A h.$

For a truncated pyramid whose parallel upper and lower bases have areas A_1 and A_2 respectively and whose distance apart is h,

 $V = \frac{1}{3} h (A_2 + \sqrt{A_2 A_1} + A_1).$

The volume of a wedge and obelisk may be expressed by means of the volumes of pyramids and prisms.

c. Volume of right circular cylinder. r = radius of base, h = altitude, V = volume. $V = \pi r^2 h.$

 $\pi = 3.14159265$, $\log \pi = 0.49714987$.

For an obliquely truncated cylinder (having a circular base) whose shortest and longest elements are h_1 and h_2 respectively,

$$V = \frac{1}{2} \pi r^2 (h_2 + h_1).$$

For a hollow cylinder the radii of whose inner and outer surfaces are r_1 and r_2 respectively, and whose altitude is h,

$$V = \pi h \left(r_2^2 - r_1^2 \right)$$

d. Volume of right cone with circular base.

r = radius of base, h = altitude, V = volume.

$$V = \frac{1}{3} \pi r^2 h$$

For a right truncated cone the radii of whose upper and lower parallel bases are r_1 and r_2 respectively, and whose altitude is h,

$$V = \frac{1}{3} \pi h \left(r_{\frac{3}{2}} + r_2 r_1 + r_{\frac{3}{1}} \right).$$

e. Volume of sphere and spherical segments.

r = radius of sphere, h = altitude of segment, V = volume.

For the entire sphere

$$V = \frac{4}{3} \pi r^8 = 4.1888 r^8 \text{ approximately.}$$

(For π and log π see c above.)

For a spherical segment of height h

$$V = \pi h^2 \left(r - \frac{1}{3} h \right)$$

For a zone, or difference in volume of two segments whose altitudes are h_1 and h_2 respectively

$$V = \pi r (h_2^2 - h_1^2) - \frac{1}{3} \pi (h_2^3 - h_1^3)$$

= $\frac{1}{6} \pi \Delta h (3 r_2^2 + 3 r_1^2 + \Delta h^2),$

where r_1 and r_2 are the radii of the bases of the zone and $\Delta h = h_2 - h_{1P}$

f. Volume of ellipsoid.

a, b, c = semi axes,
$$V$$
 = volume.
 $V = \frac{4}{3} \pi a b c.$

For an ellipsoid of revolution about

the *a*-axis,
$$V = \frac{4}{3} \pi a b^2$$
,
the *b*-axis, $V = \frac{4}{3} \pi a^2 b$.

UNITS.

1. STANDARDS OF LENGTH AND MASS.

THE only systems of units used extensively at the present day are the British and metric. The fundamental units in these systems are those of time, length, and mass. From these all other units are derived. The unit of time, the mean solar second, is common to both systems.

The standard unit of length in the British system is the Imperial Yard, which is defined to be the distance between two marks on a metallic bar, kept in the Tower of London, when the temperature of the bar is 62° F.

The standard unit of mass in the British system is the Imperial Pound Avoirdupois. It is a cylindrical mass of platinum marked "P. S. 1844, 1 lb.," preserved in the office of the Exchequer at Westminster.

In the metric system the standard unit of length is the Metre, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

The standard of mass in the metric system is the Kilogramme, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

Both systems of units have been legalized by the United States. Virtually, however, the material standards of length and mass of the United States are cercain Prototype Metres and certain Prototype Kilogrammes. The present status of the two systems of units so far as it relates to the United States is set forth in the following statement from the Superintendent of Standard Weights and Measures, bearing the date April 5, 1893.

FUNDAMENTAL STANDARDS OF LENGTH AND MASS.*

"While the Constitution of the United States authorizes Congress to 'fix the standard of weights and measures,' this power has never been definitely exercised, and but little legislation has been enacted upon the subject. Washington regarded the matter of sufficient importance to justify a special reference to it in his first annual message to Congress (January, 1790), and Jefferson, while Secretary of State, prepared a report at the request of the House of Representatives, in which he proposed (July, 1790) 'to reduce every branch to the decimal ratio already established for coins, and thus bring the calculation of the principal affairs of life within the arithmetic of every man who can multiply and divide.' The consideration of the subject being again urged by Washington, a committee

^{*} Bulletin 26, U. S. Coast and Geodetic Survey. Washington: Government Printing Office, 1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geodetic Survey.

of Congress reported in favor of Jefferson's plan, but no legislation followed. In the mean time the executive branch of the Government found it necessary to procure standards for use in the collection of revenue and other operations in which weights and measures were required, and the Troughton 82-inch brass scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilogramme and metre, by Gallatin, in 1821, and a Troy pound from London in 1827, also by Gallatin. In 1828 the latter was, by act of Congress, made the standard of mass for the Mint of the United States, and although totally unfit for such purpose it has since remained the standard for coinage purposes.

"In 1830 the Secretary of the Treasury was directed to cause a comparison to be made of the standards of weight and measure used at the principal customhouses, as a result of which large discrepancies were disclosed in the weights and measures in use. The Treasury Department, being obliged to execute the constitutional provision that all duties, imposts, and excises shall be uniform throughout the United States, adopted the Troughton scale as the standard of length; the avoirdupois pound to be derived from the Troy pound of the Mint as the unit of At the same time the Department adopted the wine gallon of 231 cubic mass. inches for liquid measure and the Winchester bushel of 2150.42 cubic inches for dry measure. In 1836 the Secretary of the Treasury was authorized to cause a complete set of all weights and measures, adopted as standards by the Department for the use of custom-houses and for other purposes, to be delivered to the Governor of each State in the Union for the use of the States respectively, the object being to encourage uniformity of weights and measures throughout the Union. At this time several States had adopted standards differing from those used in the Treasury Department, but after a time these were rejected, and finally nearly all the States formally adopted by act of legislature the standards which had been put in their hands by the National Government. Thus a good degree of uniformity was secured, although Congress had not adopted a standard of mass or of length other than for coinage purposes as already described.

"The next and in many respects the most important legislation upon the subject was the Act of July 28, 1866, making the use of the metric system lawful throughout the United States, and defining the weights and measures in common use in terms of the units of this system. This was the first *general* legislation upon the subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country.

"In 1875 an International Metric Convention was agreed upon by seventeen governments, including the United States, at which it was undertaken to establish and maintain at common expense a permanent International Bureau of Weights and Measures, the first object of which should be the preparation of a new international standard metre and a new international standard kilogramme, copies of which should be made for distribution among the contributing governments. Since the organization of the Bureau, the United States has regularly contributed to its support, and in 1889 the copies of the new international prototypes were ready for distribution. This was effected by lot, and the United States received metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilogrammes are made from the same material, which is an alloy of platinum with ten per cent of iridium. "On January 2, 1890, the seals which had been placed on metre No. 27 and kilogramme No. 20, at the International Bureau of Weights and Measures near Paris, were broken in the Cabinet room of the Executive Mansion by the President of the United States, in the presence of the Secretary of State and the Secretary of the Treasury, together with a number of invited guests. They were thus adopted as the National Prototype Metre and Kilogramme.

"The Troughton scale, which in the early part of the century had been tentatively adopted as a standard of length, has long been recognized as quite unsuitable for such use, owing to its faulty construction and the inferiority of its graduation. For many years, in standardizing length measures, recourse to copies of the imperial yard of Great Britain had been necessary, and to the copies of the metre of the archives in the Office of Weights and Measures. The standard of mass originally selected was likewise unfit for use for similar reasons, and had been practically ignored.

"The recent receipt of the very accurate copies of the International Metric Standards, which are constructed in accord with the most advanced conceptions of modern metrology, enables comparisons to be made directly with those standards, as the equations of the National Prototypes are accurately known. It has seemed, therefore, that greater stability in weights and measures, as well as much higher accuracy in their comparison, can be secured by accepting the international prototypes as the fundamental standards of length and mass. It was doubtless the intention of Congress that this should be done when the International Metric Convention was entered into in 1875; otherwise there would be nothing gained from the annual contributions to its support which the Government has constantly made. Such action will also have the great advantage of putting us in direct relation in our weights and measures with all civilized nations, most of which have adopted the metric system for exclusive use. The practical effect upon our customary weights and measures is, of course, nothing. The most careful study of the relation of the yard and the metre has failed thus far to show that the relation as defined by Congress in the Act of 1866 is in error. The pound as there defined, in its relation to the kilogramme, differs from the imperial pound of Great Britain by not more than one part in one hundred thousand. an error, if it be so called, which utterly vanishes in comparison with the allowances in all ordinary transactions. Only the most refined scientific research will demand a closer approximation, and in scientific work the kilogramme itself is now universally used, both in this country and in England.*

* NOTE. - Reference to the Act of 1866 results in the establishment of the following : -

Equations. 1 yard $= \frac{3600}{3937}$ metre. 1 pound avoirdupois $= \frac{1}{2'2046}$ kilo.

A more precise value of the English pound avoirdupois is $\frac{I}{2\cdot 20462}$ kilo., differing from the above by about one part in one hundred thousand, but the equation established by law is sufficiently accurate for all ordinary conversions.

As already stated, in work of high precision the kilogramme is now all but universally used, and no conversion is required.

"In view of these facts, and the absence of any material normal standards of customary weights and measures, the Office of Weights and Measures, with the approval of the Secretary of the Treasury, will in the future regard the International Prototype Metre and Kilogramme as fundamental standards, and the customary units, the yard and the pound, will be derived therefrom in accordance with the Act of July 28, 1866. Indeed, this course has been practically forced upon this office for several years, but it is considered desirable to make this formal announcement for the information of all interested in the science of metrology or in measurements of precision.

> T. C. MENDENHALL, Superintendent of Standard Weights and Measures.

"Approved : J. G. CARLISLE, Secretary of the Treasury. April 5, 1893."

No ratios of the yard to the metre and of the pound to the kilogramme have as yet been adopted by international agreement; but precise values of these ratios will doubtless be determined and adopted within a few years by the International Bureau of Weights and Measures. In the mean time, it will suffice for most purposes to use the values of the ratios adopted provisionally by the Office of Standard Weights and Measures of the United States. These values are —

I yard = $\frac{3}{2}$ metres, or I metre = $\frac{3}{2}$ metres, I pound = $\frac{1}{2}$ metres, or I kilogramme = $\frac{3}{2}$ metres, pounds.

These ratios were legalized by Act of Congress in 1866. Expressed decimally these values are * —

r yard = 0.914402 metres, r metre = 1.093611 yards, r pound = 0.45359 kilogrammes, r kilogramme = 2.20462 pounds.

The above values of the relations of the standards of the British and Metric systems of units are adopted in this work. Tables 1 and 2 give the equivalents of multiples of the standard units and also equivalents of multiples of the derived units of surface and volume. These tables are published by the Office of Standard Weights and Measures of the United States, and are here republished by permission of the Superintendent of that Office.

2. BRITISH MEASURES AND WEIGHTS.

a. Linear measures.

The unit of linear measure is the yard. Its principal sub-multiples and multiples are the inch; the foot; the rod, perch, or pole; the furlong; and the mile. The following table exhibits the relations among these measures: ---

* The actual error of the relation of the yard to the metre may be as great as 1/200 000th part, and the actual error of the relation of the pound to the kilogramme as great as 1/100 000th part.

Inches.	Feet.	Yards	Rods.	Furlongs.	Miles.
I	0.083	0.028	0.00505	0.00012626	0.0000157828
I 2	1.	0.333	0.06060	0.00151515	0.00018939
36	3.	1.	0.1818	0.004545	0.00056818
198	16.5	5.2	1.	0.025	0.003125
7920	660.	220.	40.	Ι.	0.125
63360	5280.	1760.	320.	8.	I.

Other measures are the —

Surveyor's or Gunter's chain = 4 rods = 66 feet = 100 links of 7.92 inches each.

Fathom = 6 feet; Cable length = 120 fathoms.

Hand = 4 inches; Palm = 3 inches; Span = 9 inches.

b. Surface or square measures.

The unit of square measure is the square yard. Its relations to the principal derived units in use are shown in the following table :----

Sq. feet.	Sq. yards.	Sq. rods.	Roods.	Acres.	Sq. miles.
1.	0.1111	0.00367309	0.000091827	0.000022957	
9.	Ι.	0.0330579	0.00 0826448	0.000206612	
272.25	30.25	ι.	0.025	0.00625	
10890.	1210.	40.	I.	0.25	
43560.	4840.	160.	4.	т.	
27878400	3097600.	102400.	2560.	640.	т.

c. Measures of capacity.

The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). The units of capacity for liquid measure are the British gallon (of 277.3 cubic inches about) and the wine gallon (of 231 cubic inches, nominally). The latter gallon is most commonly used in the United States. The following table shows the relations of the sub-multiples and multiples of the bushel and gallon : --

323232132
AAAIA

Dry Meas	ires.	Liquids.	
Pint	$= \frac{1}{64}$ bushel.	Gill	$= \frac{1}{32}$ gall.
Quart $= 2$ pints	$=\frac{1}{32}$ "	Pint = 4 gills	$=\frac{1}{8}$ "
Peck == 8 quarts	$=\frac{1}{4}$ "	Quart = 2 pints	= 4 "
Bushel $= 4$ pecks	= 1 "	Gallon = 4 quarts	= 1 "
		Barrel = $31\frac{1}{2}$ gallons	= 311 "
		Hhd. = 2 barrels	= 63 "

Besides the above measures of capacity the following volumetric units are used : —

Cubic foot = 1728 cubic inches.

Cubic yard = 27 cubic feet = 46656 cubic inches.

Board-measure foot = 1 square foot \times 1 inch thickness = 144 cubic inches.

Perch (of masonry) = 1 perch (16.5 feet) length \times 1 foot height \times 1.5 feet thickness = 24.75 cubic feet; 25 cubic feet are commonly called a perch for convenience.

Cord (of wood) = 8 feet length \times 4 feet breadth \times 4 feet height. = 128 cubic feet.

d. Measures of weight.

The unit of weight is the avoirdupois pound. One 7000th part of this is called a grain, and 5760 such grains make the troy pound. The sub-multiples and multiples of these two pounds are exhibited in the following table: —

	Avoirdupois.		Troy.	
Dram		= ₂ ¹ / ₅ 6 lb.	Grain	= 5760 lb.
Ounce	== 16 drs.	= 1 ¹ 6 "	Pennyweight $=$ 24 grs.	$=\frac{1}{240}$ "
Pound	== 16 ozs.	— I"	Ounce $= 20$ dwt.	$= \frac{1}{12}$ "
Quarter	= 28 lbs.	= 28 "	Pound $=$ 12 ozs.	— 1 "
	rt. = 4 qrs.			
Long ton	== 20 cwt.	= 2240 "		
Short ton	=	= 2000 "		

3. METRIC MEASURES AND WEIGHTS.

As explained in section r above, the standards of length and mass in the metric system are the metre and the kilogramme. Two material representatives of each of these standards are possessed by the United States and preserved at the Office of Standard Weights and Measures at Washington, D. C.

The standards of length are Prototype Metres Nos. 21 and 27. These are platinum iridium bars of X cross section, and their lengths are defined by lines ruled on their neutral surfaces. Their lengths at any temperature t Centigrade are given by the following equations :—

Prototype No. 21 = $1^m + 2.45 + 8.4665 t + 0.400 100 t^2$, Prototype No. 27 = $1^m - 1.46 + 8.4657 t + 0.400 100 t^2$,

where the symbol μ stands for one micron, or one millionth of a metre. The probable errors of these Prototypes may be taken as not exceeding ± 0.42 , or 1/5000000th of a metre for temperatures between 0° and 30° C.

The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are cylindrical masses of platinum iridium. Their masses and volumes are given by the following equations : —

	Mass.	Volume.
Prototype Kilogramme No.	$4 = 1^{kg} - 0^{mg} 075,$	46. ^{m1} 418,
Prototype Kilogramme No.	$20 = 1^{kg} - 0.^{mg} 039,$	46. ^{ml} 402,

where the ----

Symbol kg stands for one kilogramme, Symbol mg stands for one milligramme = 0.kg000001, Symbol ml stands for one millilitre = one cubic centimetre.

The definitive probable error assigned to the Prototype Kilogrammes by the International Bureau is $\pm 0.^{mg}002$, or $1/500\ 000\ 000$ th of a kilogramme.

The act of Congress approved July 28, 1866, authorizing the use of the metric system in the United States, provides that the tables in a schedule annexed shall be recognized "as establishing, in terms of the weights and measures now in use in the United States, the equivalents of the weights and measures expressed therein in terms of the metric system; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system." The following copy of that schedule gives the denominations of the multiples and sub-multiples of the measures of length, surface, capacity, and weight in the metric system as well as their legalized equivalents in British units.

Schedule annexed to Act of July 28, 1866.					
Measures of Length.					
Metric De	enominations.		Values in Metres	Equivalents in	Denominations in Use.
Myriametre Kilometrc Hectometre Decametre Metre Centimetre Millimetre			10000. 1000. 100. 10. 1. 0.1 0.01 0.001	6.2137 miles. 0.62137 mile, 0 328 feet and 1 i 393.7 inches. 39.37 inches. 0.3937 inches. 0.3937 inch. 0.0394 inch.	r 3280 feet and 10 inches. nch.
		Measur	es of Surfa	ce.	
Metric De	enominations.		Values in Square Metres.	Equivalents in	Denomications in Use.
Hectare			1 100 10000	2.471 acres. 119.6 square ya 1550 square inc	rds. hes.
Measures of Capacity.					
Metric Der	Metric Denominations and Values. Equivalents in Denominations in Use.				nominations in Use.
Names. No. of Litres. Cubic Me		easure. Dr	y Measure.	Liquid or Wine Measure.	

Kilolitre or stere Hectolitre Decalitre Litre Decilitre Centilitre Millilitre	1000. 100. 1. 0.1 0.01 0.001	r cubic metre	1.308 cubic yards . 2 bus. and 3.35 pks 9.08 quarts 0.908 quart 6.1022 cubic inches . 0.6102 cubic inch 0.005 cubic inch	264.17 gallons. 26.417 gallons. 2.6417 gallons. 1.0567 quarts. 0.845 gill. 0.338 fluid-ounce. 0.27 fluid-drachm.

Measures of Weight.

Metric	Equivalents in Denominations in Use.		
Names.	Number of Grammes.	Weight of what Quantity of Water at Maximum Density.	Avoirdupois Weight.
Millier or tonneau Quintal Myriagramme Kilogramme, or kilo . Hectogramme Decagramme Decigramme Centigramme Milligramme	1000000, 100000, 1000, 100, 100, 10, 10,	r cubic metre	

4. THE C. G. S. SYSTEM OF UNITS.

The C. G. S. system of units is a metric system in which the fundamental units are the centimetre, the gramme, and the mean solar second. It is the system now generally used for the expression of physical quantities.

The most important of the derived units in the C. G. S. system, their equivalents in terms of ordinary units, and their dimensions in terms of the fundamental units of length, mass, and time, are given in the Appendix to this volume.

For an elaborate consideration of the subject of units and their interrelations the reader may be referred to "Units and Physical Constants," by J. D. Everett, London, Macmillan & Co., 12mo, 4th ed., 1891.

I. FORM OF THE EARTH. THE EARTH'S SPHEROID. THE GEOID.

The shape of the earth is defined essentially by the sea surface, which embraces about three fourths of the entire surface. The sea surface is an equipotential surface due to the attraction of the earth's mass and to the centrifugal force of its rotation. We may imagine this surface to extend through the continents, and thus to be continuous. Its position at any continental point is the height at which water would stand if a canal connected the point with the ocean.

Geodetic measurements show that this surface is represented very closely by an oblate spheroid, whose shorter axis coincides with the rotation axis of the earth. This is called the earth's spheroid. The actual sea surface, on the other hand, is called the geoid. With respect to the spheroid the geoid is a wavy surface lying partly above and partly below; but the extent of the divergence of the two surfaces is probably confined to a few hundred feet.

2. Adopted Dimensions of Earth's Spheroid.

The dimensions of the earth's spheroid here adopted are those of General A. R. Clarke, published in 1866, to wit: ---

> Semi major axis, $a = 20\,926\,062$ English feet. Semi minor axis, $b = 20\,855\,121$ " "

3. AUXILIARY QUANTITIES.

The following quantities are of frequent use in geodetic formulas : ---

 $e = \sqrt{\frac{a^2 - b^2}{a^2}}, \text{ the eccentricity of generating ellipse,}$ $f = \frac{a - b}{a}, \text{ the flattening, ellipticity, or compression,}$ $n = \frac{a - b}{a + b};$ $b = a\sqrt{1 - e^2} = a(1 - f) = a\frac{1 - n}{1 + n};$ $e^2 = 2f - f^2;$ $f = 1 - \sqrt{1 - e^2} = \frac{e^2}{2} + \frac{e^4}{8} + \frac{e^6}{16} + \frac{5}{128} + \cdots$ $= \frac{2}{1 + n} = 2(n - n^2 + n^3 - n^4 + \cdots).$

$$n = \frac{f}{2-f} = (\frac{1}{2}f) + (\frac{1}{2}f)^2 + (\frac{1}{2}f)^8 + (\frac{1}{2}f)^4 + \dots$$

$$e^2 = \frac{4}{(1+n)^2} = 4 (n-2n^2+3n^8-4n^4+\dots)$$

$$m = \frac{e^2}{2-e^2} = \frac{e^2}{2} + \frac{e^4}{4} + \frac{e^8}{8} + \frac{e^8}{16} + \dots$$

$$n = \frac{1-\sqrt{1-e^2}}{1+\sqrt{1-e^2}} = \frac{e^2}{4} + \frac{e^4}{8} + \frac{5e^8}{64} + \frac{7e^8}{128} + \dots$$

The numerical values of the most useful of these quantities and their logarithms are —

	log
<i>a</i> == 20 926 062 feet,	7.3206875,
b = 20855121 feet,	7.3192127,
$e^2 = 0.00676866,$	7.8305030 — 10,
<i>m</i> == 0.00339583,	7.5309454 — 10,
<i>n</i> == 0.00169792,	7.2299162 — 10.

4. EQUATIONS TO GENERATING ELLIPSE OF SPHEROID.

With the origin at the centre of the ellipse, and with its axes as coördinate axes, the equation in Cartesian co-ordinates is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$
 (1)

a and b being the major and minor axes respectively, and x and y being parallel to those axes respectively.

For many purposes it is useful to replace equation (1) by the two following : -

$$\begin{aligned} x &= a \cos \theta, \\ y &= b \sin \theta, \end{aligned}$$
 (2)

which give (1) by the elimination of θ . This angle is called the reduced latitude. See section 5.

5. LATITUDES USED IN GEODESY.

Three different latitudes are used in geodesy, namely: (1) Astronomical or geographical latitude; (2) geocentric latitude; (3) reduced latitude. The astronomical latitude of a place is the angle between the normal (or plumb line) at that place and the plane of the earth's equator; or when the plumb line at the place coincides with the normal to the generating ellipse, it is the angle between that normal and the major axis of the ellipse. The geocentric latitude of a place is the angle between the equator and a line drawn from the place to the earth's centre; or it is the angle between the radius-vector of the place and the equator. The reduced latitude is defined by equations (2) in section 4 above. The geometrical relations of these different latitudes are shown in Fig. 1 by the notation given below.

In order to express the analytical relations between the different latitudes let

and

 $\phi - \psi$ (in seconds) = 700."44 sin 2 $\phi - 1$."19 sin 4 ϕ ,

 $\phi - \theta \text{ (in seconds)} = 350.''22 \sin 2 \phi - 0.''30 \sin 4 \phi.$

6. RADII OF CURVATURE.

 $\rho_m = \text{radius of curvature of meridian section of spheroid at any point whose latitude is <math>\phi = PO$, Fig. 1,

 $\rho_n = \text{radius of curvature of normal section perpendicular to the meridian at the same point = PQ, Fig. 1,$

 $\rho_{\alpha} =$ radius of curvature of normal section making angle α with the meridian at same point.

$$\rho_{m} = a (1 - e^{2}) (1 - e^{2} \sin^{2} \phi)^{-\frac{3}{2}},$$

$$\rho_{n} = a (1 - e^{2} \sin^{2} \phi)^{-\frac{3}{2}},$$

$$\frac{1}{\rho_{a}} = \frac{\cos^{2} a}{\rho_{m}} + \frac{\sin^{2} a}{\rho_{n}}$$

$$= \frac{1}{a} (1 + \frac{e^{2}}{1 - e^{2}} \cos^{2} \phi \cos^{2} a) (1 - e^{2} \sin^{2} \phi)^{\frac{1}{2}}.$$

$$\log (1 - e^{2} \sin^{2} \phi)^{-\frac{1}{2}} = + \log (1 + n)$$

$$- \mu n \cos 2\phi$$

$$+ \frac{1}{2} \mu n^{2} \cos 4\phi$$

$$- \frac{1}{3} \mu n^{3} \cos 6\phi$$

$$+ \dots$$

 $\mu =$ modulus of common logarithms and *n* is same as in section 3. For the adopted spheroid —

Radius of curvature of meridian section p_m in feet.

$$\log \rho_m = + 7.3199482 - [4.34482] \cos 2\phi + [1.274] \cos 4\phi - \dots$$

Radius of curvature of normal section ρ_n in feet.

$$\log \rho_n = + 7.3214243 - [3.86770] \cos 2\phi + [0.797] \cos 4\phi - \dots$$

The numbers in brackets in these formulas are logarithms to be added to the logarithms of $\cos 2\phi$ and $\cos 4\phi$. The numbers corresponding to the sums of these logarithms will be in units of the seventh decimal place of the first constant. Thus, for $\phi = 0$,

$$\log \rho_n = 7.3214243 - 7373.9 + 6.3 = 7.3206875 = \log a.$$

7. LENGTH OF ARCS OF MERIDIANS AND PARALLELS OF LATITUDE.

a. Arcs of Meridian.

For the computation of short meridional arcs lying between given parallels of latitude the following simple formulas suffice :

$$\begin{aligned} \Delta \phi &= \phi_2 - \phi_1, \\ \phi &= \frac{1}{2} (\phi_2 + \phi_1), \\ \Delta M &= \rho_m \, \Delta \phi. \end{aligned} \tag{I}$$

In these, ϕ_1 and ϕ_2 are the latitudes of the ends of the arc, ΔM is the required length, and ρ_m is the meridian radius of curvature for the latitude ϕ of the middle point of the arc. The formula for ΔM implies that $\Delta \phi$ is expressed in parts of the radius. If $\Delta \phi$ is expressed in seconds, minutes, or degrees of arc, the formula becomes —

$$\Delta M = \frac{\rho_m \Delta \phi \text{ (in seconds)}}{206264.8},$$

$$= \frac{\rho_m \Delta \phi \text{ (in minutes)}}{3437.747},$$

$$= \frac{\rho_m \Delta \phi \text{ (in degrees)}}{57.29578};$$
(2)
$$\log (1/206264.8) = 4.6855749 - 10,$$

$$\log (1/3437.747) = 6.4637261 - 10,$$

$$\log (1/3437.747) = 8.2418774 - 10.$$

$$\phi_1, \phi_2 = \text{end latitudes of arc,} \quad \Delta \phi = \phi_2 - \phi_1,$$

$$= \text{meridian radius of curvature for } \phi = \frac{1}{2}(\phi_2 + \phi_1); \quad \text{for log } \rho_m \text{ see Table 10.}$$

 $\rho_m =$

The relations (2) will answer most practical purposes when $\Delta \phi$ does not exceed 5°. A comparison with the precise formula (3) below shows in fact that the error of (2) is very nearly

 $\frac{1}{8} e^2 \Delta \phi^2 \cos 2\phi \cdot \Delta M,$

which vanishes for $\phi = 45^{\circ}$, and which for $\Delta \phi = 5^{\circ}$ is at most $\frac{1}{155000} \Delta M$, or about 11 feet.

Numerical example. Suppose ----

$$\phi_2 = 37^\circ 29' 48.''17, \phi_1 = 35^\circ 48' 29.''89.$$

Then

$$\begin{array}{rcl} \phi = \frac{1}{2}(\phi_2 + \phi_1) = 36^{\circ} \ 39' & 09.'' 03, \\ \Delta \phi = & \phi_2 - \phi_1 = & 1^{\circ} \ 41' & 18.'' 28, \\ & = & 6078.'' 28. \end{array}$$

From the first of (2)

 cons't. log
 4.6855749 - 10

 Table 10, log ρ_m 7.3193112

 log $\Delta \phi$ 3.7837807

 $\Delta M == 614705$ feet, log ΔM 5.7886668

The values of ΔM for intervals of 10", 20" ... 60", and for 10', 20' ... 60' are given in Table 17 for each degree of latitude from 0° to 90°.

For precise computation of long meridional arcs the following formula is adequate : ---

$$\Delta M = A_0 \Delta \phi - A_1 \cos 2\phi \sin \Delta \phi + A_2 \cos 4\phi \sin 2\Delta \phi - A_3 \cos 6\phi \sin 3\Delta \phi$$
(3)
+ A_4 \cos 8\phi \sin 4\Delta \phi
-

In this, ΔM , ϕ , and $\Delta \phi$ have the same meanings as above, and A_0 , A_1 , ... are functions of a and e or of a and n.

Thus, in terms of a and n,

$$A_{0} = a (1 + n)^{-1} (1 + \frac{1}{4}n^{2} + \frac{1}{64}n^{4} + \dots),$$

$$A_{1} = 3a (1 + n)^{-1} (n - \frac{1}{8}n^{8} - \dots),$$

$$A_{2} = \frac{1}{8}a (1 + n)^{-1} (n^{2} - \frac{1}{4}n^{4} - \dots),$$

$$A_{3} = \frac{3}{24}a (1 + n)^{-1} (n^{8} - \dots),$$

$$A_{4} = \frac{3}{25}a (1 + n)^{-1} (n^{4} - \dots).$$

Introducing the adopted values of a and n, these constants become —

 $A_0 = 20 890 606 \text{ feet}, 7.3199510,$ $A_1 = 106 411 \text{ feet}, 5.0269880,$ $A_2 = 113 \text{ feet}, 2.0528,$ $A_3 = 0.15 \text{ feet}, 9.174 - 10.$

It appears, therefore, that the first three terms of (3) will give ΔM with an accuracy considerably surpassing that of the constant A_0 . In the use of (3) it will generally be most convenient to express $\Delta\phi$ in degrees, and in this case A_0 must be divided by the number of degrees in the radius, viz. : 57.2957795 [1.7581226]. Applying this value and writing the logarithms of A_0 , A_1 , etc., in rectangular brackets in place of A_0 , A_1 , etc., (3) becomes

Meridional distance ΔM in feet.

$$\Delta M = [5.5618284] \Delta \phi \text{ (in degrees)} - [5.0269880] \cos 2\phi \sin \Delta \phi \qquad (4) + [2.0528] \cos 4\phi \sin 2\Delta \phi - \dots = \phi_2 + \phi_1, \qquad \Delta \phi = \phi_2 - \phi_1, \qquad \phi_1, \phi_2 = \text{ end latitudes of arc.}$$

Formula (4) will suffice for the calculation of any portion or the whole of a quadrant. The length of a quadrant is the value of the first term of (4) when $\phi = 45^{\circ}$ and $\Delta \phi = 90^{\circ}$, since all of the remaining terms vanish.

Numerical examples. - 1°. Suppose

2φ

$$\phi_1 = 0^\circ \text{ and } \phi_2 = 45^\circ.$$

 $2\phi = 45^\circ,$
 $\Delta\phi = 45^\circ.$

Then

		log.
	cons't	5.5618284
	45	1.6532125
1st term + 16 407 443 feet	ıst term	7.2150409
	cos 2¢	9.8494850 — 10
	sin Δφ	9.8494850 — 10
	cons't	5.0269880
2d term — 53 205.7 feet	2d term	4.7259580

The third term of the series vanishes by reason of the factor $\cos 4\phi = \cos 90^{\circ}$ = 0. The sum of the first two terms, or length of a meridional arc from the equator to the parallel of 45°, is 16 354 237 feet.

2°. Suppose $\phi_1 = 45^\circ \text{ and } \phi_2 = 90^\circ$. Then $2\phi = 135^\circ$, $\Delta \phi = 45^\circ$.

The numerical values of the terms will be the same as in the previous example, but the sign of the second term will be *plus*. Hence the length of the meridional arc between the parallel of 45° and the adjacent pole is 16 460 649 feet. The sum of these two computed distances, or the length of a quadrant, is 32 814 886 feet.

xlviii

This agrees as it should with the length given by (4) when $2\phi = 90^{\circ}$ and $\Delta\phi = 90^{\circ}$.*

b. Arcs of parallel.

The radius of any parallel of latitude is equal to the product of the radius of curvature of the normal section for the same latitude by the cosine of that latitude. That is, see Fig. 1, r being the radius of the parallel —

 $r = \rho_n \cos \phi$,

and the entire length of the parallel is --

 $2 \pi r = 2 \pi \rho_n \cos \phi.$

Designate the portion of a parallel lying between meridians whose longitudes are λ_1 and λ_2 by ΔP , and call the difference of longitude $\lambda_2 - \lambda_1$, $\Delta \lambda$.

Then —

Arc of parallel
$$\Delta P$$
 in feet.

$$\Delta P = \frac{2 \pi \rho_n \cos \phi}{1296000} \Delta \lambda \text{ (in seconds),}$$

$$= \frac{2 \pi \rho_n \cos \phi}{21600} \Delta \lambda \text{ (in minutes),} \qquad (1)$$

$$= \frac{2 \pi \rho_n \cos \phi}{360} \Delta \lambda \text{ (in degrees).}$$

$$log (2 \pi/1296000) = 4.6855749 - 10, log (2 \pi/21600) = 6.4637261 - 10, log (2 \pi/360) = 8.2418774 - 10.$$

 λ_1, λ_2 = end longitudes of arc, $\Delta \lambda = \lambda_2 - \lambda_1$,

 $\rho_n =$ radius of curvature of normal section for latitude of parallel; for log ρ_n see Table 11.

Numerical Example. — Suppose $\phi = 35^{\circ}$, and $\Delta \lambda = 72^{\circ}$. Then from the third of (9)

$$\begin{array}{c} \text{cons't} & 8.2418774 - 10\\ \text{Table 11,} & \rho_n & 7.3211716\\ & \cos \phi & 9.9133645 - 10\\ & \Delta \lambda & 1.8573325\\ \Delta P = 21564827 \text{ feet,} & \Delta P & 7.3337460 \end{array}$$

* The best formula for computing the entire length of a meridian curve is this:

 $\pi (a + b) (1 + \frac{1}{4}n^2 + \frac{1}{64}n^4 + \ldots),$

in which a, b, and n are the same as defined in section z. For the values here adopted —

	log.
$(1 + \frac{1}{2}n^2 + \dots)$	0.0000003
(a + b)	7.6209807
π	0.4971499
length	8.1181309

The length of the perimeter of the generating ellipse, or the meridian circumference of the earth, is, therefore —

131 259 550 feet = 24 859.76 miles.

The values of ΔP for intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are given in Table 18 for each degree of latitude from 0° to 90°.

8. RADIUS-VECTOR OF EARTH'S SPHEROID.

$$\rho = \text{radius-vector}$$

$$= \sqrt{x^2 + y^2}$$

$$= a (\mathbf{I} - 2e^2 \sin^2 \phi + e^4 \sin^2 \phi)^{\frac{1}{2}} (\mathbf{I} - e^2 \sin^2 \phi)^{-\frac{1}{2}}$$

$$\log \rho = \log \frac{a (2 - e^2)}{\mathbf{I} + \sqrt{\mathbf{I} - e^2}} + \mu (m - n) \cos 2\phi$$

$$- \frac{1}{2} \mu (m^2 - n^2) \cos 4\phi$$

$$+ \frac{1}{3} \mu (m^8 - n^8) \cos 6\phi$$

$$- \cdots$$

For the adopted spheroid

$$log (\rho \text{ in feet}) = 7.3199520 + [3.86769] \cos 2\phi - [1.2737] \cos 4\phi,$$

the logarithms for the terms in ϕ corresponding to units of the seventh decimal place. Thus, for $\phi = 0$,

$$\log \rho = 7.3199520 + 7373.8 - 18.8 = 7.3206875 = \log a.$$

9. Areas of Zones and Quadrilaterals of the Earth's Surface.

An expression for the area of a zone of the earth's surface or of a quadrilateral bounded by meridians and parallels may be found in the following manner: ---

The area of an elementary zone dZ, whose middle latitude is ϕ and whose width is $\rho_m d\phi$, is (see Fig. 1),

$$dZ = 2 \pi r \rho_m d\phi$$

= 2 \pi \rho_m \rho_m \cos \phi d\phi.

By means of the relations in section 6 this becomes

$$dZ = 2 \pi a^{2} (\mathbf{I} - e^{2}) \frac{\cos \phi \, d\phi}{(\mathbf{I} - e^{2} \sin^{2} \phi)^{2}}$$

= $2 \pi a^{2} \frac{\mathbf{I} - e^{2}}{e} \frac{d(e \sin \phi)}{(\mathbf{I} - e^{2} \sin^{2} \phi)^{2}}.$ (1)

The integral of this between limits corresponding to ϕ_1 and ϕ_2 , or the area of a zone bounded by parallels whose latitudes are ϕ_1 and ϕ_2 respectively, is

$$Z = \pi \ a^2 \frac{\mathbf{I} - e^2}{e} \left\{ \begin{array}{c} \frac{e \sin \phi_2}{\mathbf{I} - e^2 \sin^2 \phi_2} - \frac{e \sin \phi_1}{\mathbf{I} - e^2 \sin^2 \phi_1} \\ + \frac{1}{2} \operatorname{Nap.} \log \frac{(\mathbf{I} + e \sin \phi_2) \ (\mathbf{I} - e \sin \phi_1)}{(\mathbf{I} - e \sin \phi_2) \ (\mathbf{I} + e \sin \phi_1)} \end{array} \right\}.$$
(2)

To get the area of the entire surface of the spheroid, make $\phi_1 = -\frac{1}{2}\pi$ and $\phi_2 = -\frac{1}{2}\pi$ in (2). The result is

Surface of spheroid =
$$2 \pi a^2 \left[1 + \frac{1-e^2}{2e} \text{Nap. log} \left(\frac{1+e}{1-e} \right) \right].$$
 (3)

For numerical applications it is most advantageous to express (3) in a series of powers of e. Thus, by Maclaurin's theorem,

Surface of spheroid =
$$4 \pi a^2 \left(1 - \frac{e^2}{3} - \frac{e^4}{15} - \frac{e^6}{35} - \dots \right)$$
. (4)

For the calculation of areas of zones and quadrilaterals it is also most advantageous to expand (2) in a series of powers of $e \sin \phi_1$ and $e \sin \phi_2$ and express the result in terms of multiples of the half sum and half difference of ϕ_1 and ϕ_2 . Thus, (2) readily assumes the form

$$Z = 2 \pi a^2 (1 - e^2) \left[(\sin \phi_2 - \sin \phi_1) + \frac{2}{3} e^2 (\sin^8 \phi_2 - \sin^8 \phi_1) + \dots \right].$$

From this, by substitution and reduction, there results

$$Z = 2 \pi \left\{ \begin{array}{c} C_1 \cos \phi \sin \frac{1}{2} \Delta \phi - C_2 \cos 3\phi \sin \frac{3}{2} \Delta \phi \\ + C_3 \cos 5\phi \sin \frac{5}{2} \Delta \phi - . \end{array} \right\}, \quad (5)$$

wherein

$$\phi = \frac{1}{2}(\phi_2 + \phi_1),$$

$$\Delta \phi = \phi_2 - \phi_1,$$

$$C_1 = 2 \ a^2 \left(1 - \frac{e^2}{2} - \frac{e^4}{8} - \frac{e^6}{16} - \dots\right),$$

$$C_2 = 2 \ a^2 \left(\frac{e^2}{6} + \frac{e^4}{48} + \circ + \dots\right),$$

$$C_3 = 2 \ a^2 \left(\frac{3e^4}{80} + \frac{e^6}{40} + \dots\right).$$
(6)

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are ϕ_1 and ϕ_2 and by meridians whose difference of longitude is $\Delta\lambda$,

$$Q = \frac{\Delta\lambda}{2\pi} Z.$$

Hence, using the English mile as unit of length, (5) and (6) give for the adopted spheroid —

Area of quadrilateral in square miles.

$$Q = \Delta\lambda \text{ (in degrees)} \begin{cases} c_1 \cos\phi \sin\frac{1}{2}\Delta\phi - c_2 \cos 3\phi \sin\frac{3}{2}\Delta\phi \\ + c_3 \cos 5\phi \sin\frac{5}{2}\Delta\phi - \dots \\ \log c_1^* = 5.7375398, \\ \log c_2 = 2.79173, \\ \log c_3 = 9.976 - 10. \end{cases}$$
(7)

$$\phi = \frac{1}{2} (\phi_2 + \phi_1), \quad \Delta \phi = \phi_2 - \phi_1,$$

 $\phi_1, \phi_2 =$ latitudes of bounding parallels,
 $\Delta \lambda =$ difference of longitude of bounding meridians.

 $*c_1, c_2, c_3$ are obtained from C_1, C_2, C_3 respectively by dividing the latter by the number of degrees in the radius, viz: 57.29578.

Numerical examples. -1° . Suppose $\phi_1 = 0$, $\phi_2 = 90^{\circ}$ and $\Delta \lambda = 360^{\circ}$. Then (7) should give the area of a hemispheroid. The calculation runs thus:

log. log. log. c3 9.976 - 10 *c*₁ 5.7375398 C₂ 2.79173 $\cos \phi \ 9.8494850 - 10 \ \cos 3 \ \phi \ 9.84948_n - 10 \ \cos 5 \ \phi \ 9.849_n - 10$ $\sin \frac{1}{2} \Delta \phi$ 9.8494850 – 10 $\sin \frac{3}{2} \Delta \phi$ 9.84949 – 10 $\sin \frac{5}{2} \Delta \phi$ 9.848_n – 10 360 2.556 360 2.5563025 360 2.55630 Sum 7.9928123 5.04700n 2.229 Hence -1st term = +983585912d term = + 111429 3d term = + 169 sum == 98470189 Q =

Twice this is the area of the spheroidal surface of the earth; *i. e.*, 196 940 378 square miles.

2°. The last result may be checked by (4). Thus,

$$\left(\frac{e^2}{3} + \frac{e^4}{15} + \dots\right) = 0.00225928$$
$$\log\left(1 - \frac{e^2}{3} - \dots\right) = 9.9990177$$
$$\log a^2 = 7.1961072$$
$$\log 4\pi = 1.0992099$$
$$\log(196940407) = 8.2943348$$

This number agrees with the number derived above as closely as γ -place logarithms will permit, the discrepancy between the two values being about $\overline{\sigma\sigma\sigma}$ part of the area. Hence, with a precision somewhat greater than the precision of the elements of the adopted spheroid warrants,

Area earth's surface = 196 940 400 square miles.

The areas of quadrilaterals of the earth's surface bounded by meridians and parallels of 1°, 30', 15', and 10' extent respectively, in latitude and longitude, are given in Tables 25 to 29.

10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid.

 $r_1 =$ radius of sphere having same volume as the earth's spheroid, $r_2 =$ radius of sphere having same surface as that spheroid.

$$r_1 = \sqrt[8]{a^2 b}$$

= $a (1 - \frac{1}{6} e^2 - \frac{1}{72} e^4 - \frac{155}{1296} e^6 - \dots).$

$$r_{2} = a \left(1 - \frac{e^{2}}{3} - \frac{e^{4}}{15} - \frac{e^{6}}{35} - \dots \right)^{\frac{1}{2}}$$

= $a \left(1 - \frac{1}{6} e^{2} - \frac{17}{360} e^{4} - \frac{67}{3024} e^{6} - \dots \right).$
 $a - r_{1} = \frac{1}{6} ae^{2} \left(1 + \frac{5}{12} e^{2} + \dots \right) = 0.00113 a$, about
 $r_{2} - r_{1} = \frac{1}{45} ae^{4} + \dots = 0.000001 a$, about.

11. CO-ORDINATES FOR THE POLYCONIC PROJECTION OF MAPS.

In the polyconic system of map projection every parallel of latitude appears on the map as the developed circumference of the

base of a right cone tangent to the spheroid along that parallel. Thus the parallel EF (FIG. 2) will appear in projection as the arc of a circle EOF (FIG. 3) whose radius OG = l is equal to the slant height of the tangent cone EFG(FIG. 2). Evidently one meridian and only one will appear as a straight line. This meridian is generally made the central meridian of the area to be projected. The distances along this central meridian between consecutive parallels are made equal (on the scale of the map) to the real Adistances along the surface of the spheroid. The circles in which the parallels are developed are not concentric, but their centres all lie on the central meridian. The meridians are concave

toward the central meridian, and, except near the corners of maps showing large areas, they cross the parallels at angles differing little from right angles.

D

In the practical work of map making, the meridians and parallels are most advantageously defined by the co-ordinates of their points of intersection. These coordinates may be expressed in the following manner: For any parallel, as EOF(FIG. 3), take the origin O at the intersection with the

central meridian, and let the rectangular axes of Y(OG) and X(OQ) be respectively coincident with and perpendicular to this meridian. Call the interval in longitude between the central meridian and the next adjacent one $\Delta\lambda$, and denote the angle at the centre G subtended by the developed arc OP by α .

Then from FIG. 3 it appears that

$$x = l \sin a,$$

$$y = 2 l \sin^2 \frac{1}{2}a$$

But from FIGS. 2 and 3,

$$l = \rho_n \cot \phi,$$

$$la = r \Delta \lambda = \rho_n \Delta \lambda \cos \phi,$$

whence

 $a = \Delta \lambda \sin \phi.$

Hence, in terms of known quantities there result

$$x = \rho_n \cot \phi \sin (\Delta \lambda \sin \phi),$$

$$y = 2 \rho_n \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi).$$
(1)

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta \lambda = 25^{\circ} = 90000^{\circ}$.

Then

	log sin 40° log 57850.''88 Δλ sin φ	= 4.9542425, = 9.8080675 - 10, = 4.7623100; = 16° 04' 10."88, = 8° 02' 05."44.	
	log.		log.
$\sin (\Delta \lambda \sin \phi)$	9.4421760 — 10	$\sin \frac{1}{2} (\Delta \lambda \sin \phi)$	9.1454305 — 10
$\cot \phi$	0.0761865	$\sin \frac{1}{2} (\Delta \lambda \sin \phi)$	9.1454305 — 10
$ \rho_{n} $, Table 11	7.3212956	$\cot \phi$	0.0761865
		ρ_n , Table 11	7.3212956
		2	0.30103'00
x	6.8396581	Y	5.9893731
	$x = 6912865\mathrm{fe}$	et $y = 975 828$ feet.	

The equations (1) are exact expressions for the co-ordinates. But when $\Delta\lambda$ is small, one may use the first terms in the expansions of $\sin(\Delta\lambda\sin\phi)$ and $\sin^2\frac{1}{2}(\Delta\lambda\sin\phi)$ and reach results of a much simpler form.

Thus,

$$\sin (\Delta \lambda \sin \phi) = \Delta \lambda \sin \phi - \frac{1}{6} (\Delta \lambda \sin \phi)^8 + \dots,$$

$$\sin^2 \frac{1}{2} (\Delta \phi \sin \phi) = \frac{1}{4} (\Delta \lambda \sin \phi)^2 - \frac{1}{4^8} (\Delta \lambda \sin \phi)^4 + \dots;$$

whence, to terms of the second order,

$$x = \rho_n \Delta\lambda \cos \phi \left[1 - \frac{1}{6} (\Delta\lambda \sin \phi)^2 \right],$$

$$y = \frac{1}{4} \rho_n (\Delta\lambda)^2 \sin 2\phi \left[1 - \frac{1}{12} (\Delta\lambda \sin \phi)^2 \right].$$
(2)

If the terms of the second order in these equations be neglected, the value of x will be too great by an amount somewhat less than $\frac{1}{6}(\Delta\lambda\sin\phi)^2 \cdot x$, and the value of y will be too great by an amount somewhat less than $\frac{1}{12}(\Delta\lambda\sin\phi)^2 \cdot y$. An idea of the magnitudes of these fractions of x and y may be gained from the following table, which gives the values of $\frac{1}{6}(\Delta\lambda\sin\phi)^2$ for a few values of the arguments $\Delta\lambda$ and ϕ .

liv

Values of $\frac{1}{6}(\Delta\lambda \sin \phi)^2$.

Δλ20°		40°	бо°	
. 0				
I	1/168000	1/47700	1/26260	
2	1/420 0 0	· 1/11900	1/6560	
3	1/18700	1/5300	1/2920	

It appears from this table that the first terms of (2) will suffice in computing the co-ordinates for projection of all maps on ordinary scales, and of less extent in longitude than 2° from the middle meridian. For example, the value of x for $\Delta \lambda = 2^{\circ}$, and $\phi = 40^{\circ}$, and for a scale of two miles to one inch (1/126720), is 53.063 inches less 1/11900 part, or about 0.004 inch, which may properly be regarded as a vanishing quantity in map construction. For the computation of the co-ordinates given in the tables 19 to 24, where $\Delta \lambda$ does not exceed 1°, it is amply sufficient, therefore, to use

$$\begin{aligned} x &= \rho_n \Delta \lambda \cos \phi, \\ y &= \frac{1}{4} \rho_n (\Delta \lambda)^2 \sin 2\phi. \end{aligned} \tag{3}$$

In these formulas and in (2), if $\Delta\lambda$ is expressed in seconds, minutes, or degrees, it must be divided by the number of seconds, minutes, or degrees in the radius. The logarithms of the reciprocals of these numbers are given on p. xlvi. In the construction of tables like 19 to 24, it is most convenient, when English units are used, to express $\Delta\lambda$ in minutes and x and y in inches. For this purpose, supposing log ρ_n to be taken from Table 11, if s be the scale of the map, or scale factor, equations (3) become —

Co-ordinates x and y in inches for scale s.

$$x = \frac{12}{3437 \cdot 747} \rho_n s \Delta \lambda \cos \phi,$$

$$y = \frac{3}{(3437 \cdot 747)^2} \rho_n s (\Delta \lambda)^2 \sin 2\phi,$$

(1) in minutes .

 $\Delta\lambda$ in minutes;

$$\log (12/3437.747) = 7.54291 - 10, \log (3/(3437.747)^2) = 3.4046 - 10.$$

Tables 19 to 24 give the values of x and y for various scales and for the zone of the earth's surface lying between 0° and 80° .

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta \lambda = 15'$; and let the scale of the map be one mile to the inch, or s = 1/63360. Then the calculation by (4) runs thus:

(4)

log.	log.
cons't 7.54291 — 10	cons't 3.4046 – 10
ρ_n 7.32130	ρ_n 7.3213
s 5.19818 — 10	s 5.1982 — 10
15 1.17609	(15) ² 2.3522
cos φ 9.88425 — 10	sin 2¢ 9.9934 — 10
<i>x</i> 1.12273	y 8.2697 - 10
In.	In.
x = 13.266	<i>y</i> = 0.01861.

These values of x and y, it will be observed, agree with those corresponding to the same arguments in Table 22.

When many values for the same scale are to be computed, log s should, of course, be combined with the constant logarithms of (4). Moreover, since in (4) x varies as $\Delta\lambda$ and y as $(\Delta\lambda)^a$, when several pairs of co-ordinates are to be computed for the same latitude, it will be most advantageous to compute the pair corresponding to the greatest common divisor of the several values of $\Delta\lambda$ and derive the other pairs by direct multiplication.

12. LINES ON A SPHEROID.

The most important lines on a spheroid used in geodesy are (a) the curve of a vertical section; (δ) the geodesic line; and (c) the alignment curve. Imagine two points in the surface of a spheroid, and denote them by P_1 and P_2 respectively. The vertical plane at P_1 containing P_2 and the vertical plane at P_2 containing P_1 give vertical section curves or lines. The curves cut out by these two planes coincide only when P_1 and P_2 are in a meridian plane. The geodesic line is the shortest line joining P_1 and P_2 , and lying in the surface of the spheroid. The alignment curve on a spheroid is a curve whose vertical tangent plane at every point of its length contains the terminal points P_1 and P_2 . The curve (a) lies wholly in one plane, while (b) and (c) are curves of double curvature. In the case of a triangle formed by joining three points on a spheroid by lines lying in its surface, the curves of class (a) give two distinct sets of triangle sides, while the curves of classes (b) and (c) give but one set of sides each. For all intervisible points on the surface of the earth, these different lines differ immaterially in length; the only appreciable differences they present are in their azimuths (see formula under b below). Of the three classes of curves the first two only are of special importance.

a. Characteristic property of curves of vertical section.

Let $a_{1,2} = azimuth of vertical section at <math>P_1$ through P_2 , $a_{2,1} = azimuth of vertical section at <math>P_2$ through P_1 , $\theta_1, \theta_2 = reduced latitudes of <math>P_1$ and P_2 respectively, $\delta_1, \delta_2 = angles of depression at <math>P_1$ and P_2 respectively of the chord joining these points.

Then the characteristic property of the vertical section curve joining P_1 and P_2 is

$$\sin a_{1,2} \cos \theta_1 \cos \delta_1 = \sin (a_{2,1} - 180^\circ) \cos \theta_2 \cos \delta_2.$$

The azimuths $a_{1,2}$ and $a_{2,1}$, it will be observed, are the astronomical azimuths, or the azimuths which would be determined astronomically by means of an altitude and azimuth instrument.

b. Characteristic property of geodesic line.

Let

$$a'_{1,2}$$
 = azimuth of geodesic line at P_1 ,
 $a'_{2,1}$ = azimuth of geodesic line at P_2 ,
 θ_1 , θ_2 = reduced latitudes of P_1 and P_2 respectively.

Then the characteristic property of the geodesic line is

$$\sin a_{1,2} \cos \theta_1 = \sin (180^\circ - a_{2,1}) \cos \theta_2 = \cos \theta_{0,1}$$

where θ_0 is the reduced latitude of the point where the geodesic through P_1 and P_2 is at right angles to a meridian plane.

The difference between the astronomical azimuth $a_{1,2}$ and the geodesic azimuth $a'_{1,2}$ is expressed by the following formula:

$$a_{1,2} - a'_{1,2}$$
 (in seconds) $= \frac{1}{12} \rho'' e^2 \left(\frac{s}{a}\right)^2 \cos^2 \phi \sin 2a_{1,2}$

where

 $s = \text{length of geodesic line } P_1 P_2,$ a = major semi-axis of spheroid, e = eccentricity of spheroid, $\rho'' = 206264.''8,$ $\phi = \text{astronomical latitude of } P_1,$ $a_{1.2} = \text{azimuth (astronomical or geodesic) of } P_1 P_2,$

$$\log \frac{1}{12} \rho'' \left(\frac{e}{a}\right)^2 = 7.4244 - 20$$
, for *a* in feet.

Thus, for $\phi = 0$ and $a_{1,2} = 45^{\circ}$, for which $\cos^2 \phi \sin 2a_{1,2} = 1$, the above formula gives

$$a_{1.2} - a'_{1.2} = 0.''074$$
, for $s = 100$ miles,
= 0.296, for $s = 200$ miles,
= ...;

so that for most geodetic work this difference is of little if any importance.

13. Solution of Spheroidal Triangles.

The data for solution of a spheroidal triangle ordinarily presented are the measured angles and the length of one side. This latter may be either a geodesic line or a vertical section curve, since their lengths are in general sensibly equal. Such triangles are most conveniently solved in accordance with the rule afforded by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of any measurable size on the earth) are sensibly equal to the sides of a plane triangle having a base of the same length and angles equal respectively to the spheroidal angles diminished each by one third of the excess of the spheroidal triangle. In other words, the computation of spheroidal triangles is thus made to depend on the computation of plane triangles.

a. Spherical or spheroidal excess.

The excess of a spheroidal triangle of ordinary extent on the earth is given by

$$\epsilon$$
 (in seconds) $= \rho'' \frac{S}{\rho_m \rho_n}$

where S is the area of the spheroidal or corresponding plane triangle; ρ_m , ρ_n are the principal radii of curvature for the mean latitude of the vertices of the triangle; and $\rho'' = 206264$."8. For a sphere, $\rho_m = \rho_n =$ radius of the sphere.

Denote the angles of the spheroidal triangle by A, B, C, respectively; the corresponding angles of the plane triangle by a, β , γ (as on p. xviii); and the sides common to the two triangles by a, b, c. Then

$$S = \frac{1}{2} ab \sin \gamma = \frac{1}{2} bc \sin \alpha = \frac{1}{2} ca \sin \beta.$$

 $\alpha = A - \frac{1}{3} \epsilon, \quad \beta = B - \frac{1}{3} \epsilon, \quad \gamma = C - \frac{1}{3} \epsilon.$

Tables 13 and 14 give the values of $\log (\rho''/2\rho_m\rho_n)$ for intervals of 1° of astronomical or geographical latitude.*

14. GEODETIC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH.

a. Primary triangulation.

Denote two points on the surface of the earth's spheroid by P_1 and P_2 respectively. Let

s = length of geodesic line joining P_1 and P_2 , $\phi_1, \phi_2 =$ astronomical latitudes of P_1 and P_2 , $\lambda_1, \lambda_2 =$ longitudes of P_1 and P_2 , $\Delta \lambda = \lambda_2 - \lambda_1$, $a_{1,2} =$ azimuth of $P_1 P_2$ (s) at P_1 , $a_{2,1} =$ azimuth of $P_2 P_1$ (s) at P_2 , e = eccentricity of spheroid, $a_{2,2} =$ and $a_{2,3} =$ and $a_{2,3} =$

 ρ_m , $\rho_n =$ principal (meridian and normal) radii of curvature at the point P_1 .

Then for the longest sides of measurable triangles on the earth the following formulas will give ϕ_2 , λ_2 , and $a_{2,1}$ in terms of ϕ_1 , λ_1 , $a_{1,2}$, and s. The azimuths are astronomical, and are reckoned from the south by way of the west through 360°.

$$a' = 180^{\circ} - a_{1.2}, \quad \text{and } a_{2.1} = 180^{\circ} + a'', \quad \text{for } a_{1.2} < 180^{\circ}$$
(1)

$$a' = a_{1,2} - 180^{\circ}$$
, and $a_{2,1} = 180^{\circ} - a''$, for $a_{1,2} > 180^{\circ}$

$$\eta \coloneqq \frac{s}{\rho_n} \left\{ 1 + \frac{1}{s} \frac{e^2}{1 - e^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 \alpha' \right\}$$
(2)

$$\zeta = \frac{1}{4} \frac{e^2 \eta^2}{1 - e^2} \cos^2 \phi_1 \sin 2a'$$
(3)

* For the solution of very large triangles and for a full treatment of the theory thereof, consult Die Mathematischen und Physikalischen Theoricen der Höheren Geodäsie, von Dr. F. R. Helmert. Leipzig, 1880, 1884.

lviii

$$\tan \frac{1}{2}(a'' + \Delta\lambda + \zeta) = \frac{\cos \frac{1}{2}(9\circ^{\circ} - \phi_1 - \eta)}{\cos \frac{1}{2}(9\circ^{\circ} - \phi_1 + \eta)} \cot \frac{1}{2} a'$$

$$\tan \frac{1}{2}(a'' - \Delta\lambda + \zeta) = \frac{\sin \frac{1}{2}(9\circ^{\circ} - \phi_1 - \eta)}{\sin \frac{1}{2}(9\circ^{\circ} - \phi_1 + \eta)} \cot \frac{1}{2} a'$$

$$(4)$$

$$\phi_2 - \phi_1 = \frac{s}{\rho_m} \frac{\sin \frac{1}{2}(a'' - a' + \zeta)}{\sin \frac{1}{2}(a'' + a' + \zeta)} \{ 1 + \frac{1}{12} \eta^2 \cos^2 \frac{1}{2}(a'' - a') \}.$$
(5)

To express η , ζ , and $\phi_2 - \phi_1$ in seconds of arc we must multiply the right hand sides of (2), (3), and (5) by $\rho'' = 206264$."8. For logarithmic compution of η'' and ζ'' , or η and ζ in seconds, we may write with an accuracy generally sufficient

$$\log \eta'' = \log (\rho'' s / \rho_n) + \frac{1}{6} \frac{\mu e^2}{1 - e^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 \alpha', \tag{6}$$

$$\log \zeta'' = \log \frac{1}{4} \frac{e^2}{(1-e^2)\rho''} + \log \{(\eta'')^2 \cos^2 \phi_1 \sin 2 \alpha'\}, \qquad (7)$$

where μ in (6) is the modulus of common logarithms. For units of the 7th decimal place of log η'' we have for the adopted spheroid

$$\log \frac{1}{6} \frac{\mu e^2}{1 - e^2} = 3.69309.$$

Also

$$\log \frac{1}{4} \frac{e^2}{(1-e^2)\rho'} = 1.91697 - 10.$$

Similarly, for the computation of the logarithm of the last factor in (5) we have

$$\log \{I + \frac{1}{12} \eta^2 \cos^2 \frac{1}{2} (a'' - a')\} = \log \{I + \frac{I}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{I}{2} (a'' - a')\}.$$

Putting for brevity

$$q = \frac{1}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{1}{2}(a'' - a')$$

the logarithm of the desired logarithm is given to terms of the second order inclusive in q by

$$\log\log\left(1+q\right) = \log\mu q - \frac{1}{2}\mu q.$$

For the adopted spheroid

$$\log \frac{\mu}{12(\rho'')^2} = 4.92975 - 10$$

for units of the seventh decimal place.

For a line 200 miles (about 320 kilometres) long, the maximum value of the second term in (6) is but 12.6 units in the 7th place of $\log \eta''$. For the same length of line, the maximum value of ξ'' is 0."895, and the maximum value of the logarithm of the last factor in (5), or log (1 + q), is less than 922 units in the seventh place of decimals.

For computing differences of latitude, longitude, and azimuth in primary triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less in length, the most convenient means are formulas giving $\phi_2 - \phi_1$, $\lambda_2 - \lambda_1$, and

lix

 $a_{2.1} - (180^\circ - a_{1.2})$, in series proceeding according to powers of the distance s. Formulas of this kind with convenient tables for facilitating the computations are given in the Reports of the U. S. Coast and Geodetic Survey.*

b. Secondary triangulation.

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or less in length, and wherein differences of latitude and longitude are needed to the nearest hundredth of a second only, the following formulas may suffice. Using the same notation as in the preceding section, the formulas are : —

$$\begin{aligned} \phi_2 &= \phi_1 + \Delta \phi, \\ \lambda_2 &= \lambda_1 + \Delta \lambda, \\ a_{2,1} &= 180^\circ + a_{1,2} + \Delta a, \end{aligned}$$
 (1)

$$\begin{aligned} \Delta \phi &= - & a_1 s \cos a_{1,2} - a_2 s^2 \sin^2 a_{1,2}, \\ \Delta \lambda &= + b_1 \sec \phi_1 s \sin a_{1,2} - b_2 s^2 \sin a_{1,2} \cos a_{1,2}, \\ \Delta a &= -c_1 \tan \phi_1 s \sin a_{1,2} + c_2 s^2 \sin a_{1,2} \cos a_{1,2}. \end{aligned}$$
(2)

The constants entering the latter equations are defined by the following expressions, wherein ρ_m and ρ_n are the principal radii of curvature of the spheroid at the point whose latitude is ϕ_1 and $\rho'' = 206264$."8:

$$a_{1} = \frac{\rho''}{\rho_{m}}, \qquad b_{1} = c_{1} = \frac{\rho''}{\rho_{n}},$$
$$a_{2} = \frac{\rho'' \tan \phi_{1}}{2 \rho_{m} \rho_{n}}, \qquad b_{2} = \frac{\rho'' \sec \phi_{1} \tan \phi_{1}}{\rho_{n}^{2}}, \qquad c_{2} = \frac{\rho'' (1 + 2 \tan^{2} \phi_{1})}{2 \rho_{n}^{2}}$$

The logarithms of the factors a_1 , b_1 , c_1 , a_2 , b_2 , c_2 , are given in Table 15 for the English foot as unit, and in Table 16 for the metre as unit, the argument being the initial latitude ϕ_1 for all of them.

When all of the differences given by (z) are computed, they may be checked by the formula

$$\sin \frac{1}{2}(\phi_2 + \phi_1) = \frac{\Delta a}{\Delta \lambda}.$$
 (3)

For convenience of reference in numerical applications of the above formulas, (2) may be written thus:

$$\Delta \phi = A_1 + A_2,$$

 $\Delta \lambda = B_1 + B_2,$
 $\Delta a = C_1 + C_2,$

in which, for example, A_1 and A_2 are the first and second terms respectively of $\Delta \phi$, due regard being paid to the signs of the functions of $a_{1,2}$.

Numerical example. The following example will serve to illustrate the use of formulas (1) to (3). The value of $\log s$ is for s in English feet, s being in this case about 12.3 miles.

* See Appendix 7, Report of 1884, for latest edition of these tables.

log	log	log		log
s 4.81308	s 4.81308	s sin a _{1.2} 4.647	$s \sin a_{1.2}$	4.647
00s a1.2 9.86392	sin a _{1.2} 9.83402	s sin a _{1.2} 4.647	$s \cos a_{1.2}$	4.677
<i>a</i> 1 7.99495	sec \$1 0.10890	<i>a</i> ₂ 0.279	b_2	0.688
	<i>b</i> 1 7.99316		c_2	0.733
A1 2.67195	<i>B</i> 1 2.74916	A_2 9.573	B_2	0.012
	sin φ1 9.79795		\mathcal{C}_2	0.057
	C1 2.54711			
				log
A1 - 469."84	$B_1 + 561.''_{25}$	<i>C</i> 1 – 352."46	Δα	2.54570
$A_2 - 0.''37$	$B_2 - 1.''$ 03	$C_2 + 1.''14$	Δλ	2.74836
$\Delta \phi - 470.''^{21}$	Δλ + 560."22	$\Delta a = 351.''32$	$\sin \frac{1}{2}(\phi_2 + \phi_1)$	9.79734

15. TRIGONOMETRIC LEVELING.

a. Computation of heights from observed zenith distances.

Let
$$s =$$
 sea level distance between two points P_1 and P_2 ,

- $H_1, H_2 =$ heights above sea level of P_1 and P_2 ,
 - $z_1 =$ observed zenith distance of P_2 from P_1 ,
 - $z_2 =$ observed zenith distance of P_1 from P_2 ,
 - $\rho = \text{radius of curvature of vertical section at } P_1 \text{ through } P_2, \text{ or at } P_2 \text{ through } P_1, \text{ the curvature being sensibly the same for both for this purpose,}$

C = angle at centre of curvature subtended by s,

 $m_1, m_2 = \text{coefficients of refraction at } P_1 \text{ and } P_2,$

 $\Delta z_1, \Delta z_2 =$ angles of refraction at P_1 and P_2 .

Then, the fundamental relations are

$$C = \frac{s}{\rho}, \quad \Delta z_1 = m_1 C, \quad \Delta z_2 = m_2 C, \quad (1)$$

$$z_1 + z_2 + \Delta z_1 + \Delta z_2 = 180^\circ + C,$$

 $H_2 - H_1 = s \tan \frac{1}{2}(z_2 + \Delta z_2 - z_1 - \Delta z_1) \left(1 + \frac{H_2 + H_1}{2 \rho} + \frac{s^2}{12 \rho^2} + \ldots \right). \quad (2)$

When the zenith distances z_1 and z_2 are simultaneous, or when Δz_1 and Δz_2 are assumed to be equal, (2) becomes

$$H_2 - H_1 = s \tan \frac{1}{2}(z_2 - z_1) \left(1 + \frac{H_2 + H_1}{2\rho} + \frac{s^2}{12\rho^2} + \ldots \right).$$
(3)

For the case of a single observed zenith distance z_1 , say, and a known or assumed value of $m = m_1 = m_2$, the following formula may be applied:

$$H_2 - H_1 = s \cot z_1 + \frac{1-2m}{2\rho} s^2 + \frac{1-m}{\rho} s^2 \cot^2 z_1.$$
 (4)

The coefficient of refraction m varies very greatly under different atmospheric conditions. Its average value for land lines is about 0.07. The following table gives the values of $\log \frac{1}{2}(1-2m)$ and $\log (1-m)$ for values of m ranging from 0.05 to 0.10. It is taken from Appendix 18, Report of U. S. Coast and Geodetic

Survey for 1876. Table 12 taken from the same source gives values of $\log \rho$ needed for use in (3) and (4).

m	$\log \frac{1}{2}(1-2m).$	$\log (1-m).$	m	$\log \frac{1}{2}(1-2m).$	log (1 — m).
0.050	9.65321	9.978	0.075	9.62839	9.966 66
51	65225	77	76	62737	
52	65128	77	77	62634	65
53	65031	76	78	62531	65
54	64933	76	79	62428	64
0.055	9.64836	9.975	0.080	9.62325	9.964
56	64738	75	81	62221	63
57	64640	75	82	62118	63
58	64542	74	83	62014	62
59	64444	74	84	61910	62
0.060	9.64345	9.973	0.085	9.61805	9.961
61	64246	73	86	61700	61
62	64147	72	87	61595	60
63	64048	72	88	61490	60
64	63949	71	89	61384	60
0.065	9.63849	9 .971	0.090	9.61278	9.959
66	63749	70	91	61172	59
67	63649	70	92	61066	58
68	63548	69	92	60959	58
69	63448	69	93	60853	57
09	03440		94	00033	51
0.070	9.63347	9.968	0.095	9.60746	9.957
71	63246	68	96	60638	56
72	63144	68	97	60531	56
73	63043	67	98	60423	55
74	62941	67	. 99	60315	55
			0.100	9.60206	9.954

Table of values of log $\frac{1}{2}(1-2m)$ and log (1-m).

For less precise work one may use equation (4) in the form

$$H_2 - H_1 = s \cot z_1 + c s^2, \tag{5}$$

wherein, if we make m = 0.07 and use for ρ its average value, or $\sqrt{\rho_m \rho_n}$, for latitude 45°,

$$\log c = 2.313 - 10 \text{ for } s \text{ in feet,}$$
$$= 2.829 - 10 \text{ for } s \text{ in metres.}$$

Thus, for a distance (s) of 10 miles the value of the term $c s^2$ in (5) is 57.3 feet.

If altitudes a_1 , say, are observed in the place of zenith distances z_1 , it is most convenient to write (5) thus: ---

$$H_2 - H_1 = \pm s \tan a_1 + c s^2, \tag{6}$$

where the upper sign is used when a_1 is an angle of elevation and the lower sign when a_1 is an angle of depression.

b. Coefficients of refraction.

When z_1 and z_2 are both observed for a given line, a coefficient of refraction may be computed from the assumption of equality of coefficients at the two ends of the line. Thus, equations (1) give

$$\Delta z_1 + \Delta z_2 = 180^\circ + C - (z_1 + z_2)$$

$$(m_1 + m_2) \frac{s}{\rho} = 180^\circ + \frac{s}{\rho} - (z_1 + z_2)$$

whence

$$m_1 + m_2 = 1 - \frac{\rho}{s} (z_1 + z_2 - 180^\circ).$$

Assuming $m_1 = m_2 = m$, and supposing $z_1 + z_2 - 180^\circ$ expressed in seconds of arc,

$$m = \frac{1}{2} \left\{ 1 - \frac{\rho}{s\rho''} \left(z_1 + z_2 - 180^\circ \right) \right\}.$$

$$\rho'' = 206264.''8, \qquad \log \rho'' = 5.3144251.$$

c. Dip and distance of sea horizon.

Let

\hbar = height of eye above sea level, δ = dip or angle of depression of horizon, s = distance of horizon from observer. δ (in seconds) = 58.82 $\sqrt{\hbar}$ in feet,

Then

$$= 106.54 \sqrt{h} \text{ in metres}$$

s (in miles)
$$= 1.317 \sqrt{h} \text{ in feet,}$$

s (in kilometres)
$$= 3.839 \sqrt{h} \text{ in metres.}$$

The above formulas take account of curvature and refraction. They depend on the value 0.0784 for the coefficient of refraction, and are quite as accurate as the uncertainties in such data justify. For convenience of memory, and for an accuracy amply sufficient in most cases, the coefficients of the radicals in the last two formulas may be written $\frac{4}{3}$ and $\frac{1}{3}$ respectively.

16. MISCELLANEOUS FORMULAS.

a. Correction to observed angle for eccentric position of instrument

Let C' be the eccentric position of the instrument, and C_0 the observed value of the angle at that point between two other points A and B. Let C denote the central point as well as the angle ACB desired. Call the distance CC' r and denote the angle ACC' by θ . Denote the lines BC and AC, which are assumed to be sensibly the same as BC' and AC', by a and b respectively. Then

$$C - C_0 \text{ (in seconds)} = \frac{\rho'' r \sin(\theta - C_0)}{a} - \frac{\rho'' r \sin\theta}{b},$$

$$\rho'' = 206\ 264.''8, \qquad \log \rho'' = 5.3144251.$$

Attention must be paid to the signs of $\sin (\theta - C_0)$ and $\sin \theta$, and to the fact that angles are counted from A towards B through 360°. A diagram drawn in accordance with the above specifications will elucidate any special case.

b. Reduction of measured base to sea level.

Let l be the length of the bar, tape or other unit used in measuring the base. Let l_0 be the corresponding length reduced to sea level for a height h, this latter being the observed height of l. Then if ρ denote the radius of curvature of the earth's surface in the direction of the base,

$$l_0 = \frac{\rho l}{\rho + \lambda} = \left(\mathbf{I} - \frac{\lambda}{\rho} + \dots \right) l$$

with sufficient accuracy. Hence, for the whole length of the base,

$$\Sigma l_0 = \Sigma l - \frac{1}{\rho} \Sigma lh.$$

If L denote the total measured length, L_0 the corresponding total sea level length, and H the mean value of the heights h, the above equation gives

$$L_0 = L - L \frac{H}{\rho}.$$

c. The three-point problem.

In this problem the positions of three points A, B, C, and hence the elements of the triangle they form, are given together with the two angles APC and BPC at a point P whose position is required. Denote the angles and the sides of the known triangle by A, B, C, and a, b, c, respectively. Also put

$$APC = \beta, \quad BPC = \alpha, \\ PAC = x, \quad PBC = y.$$

Then the sum of the angles in the quadrilateral PACB is

$$a + \beta + x + y + C = 360^{\circ},$$

$$\frac{1}{2}(x + y) = 180^{\circ} - \frac{1}{2}(a + \beta + C).$$
 (1)

whence

Compute an auxiliary angle z from the equation

$$\tan z = \frac{a \sin \beta}{b \sin a}; \tag{2}$$

Then

$$\tan \frac{1}{2}(x-y) = \tan (z-45^{\circ}) \tan \frac{1}{2}(x+y).$$
 (3)

These three equations give all the data essential to a complete determination of the position of P. Any special case should be elucidated by a diagram drawn in accordance with the specifications given above.

When the positions of the points A, B, C are given on a map, the position of P on the same map may be found graphically by drawing lines making angles with each other equal to the given angles α and β from a point on a piece of tracing paper, and then placing this tracing on the map so as to meet the required conditions. This ready method of solving the problem is often sufficient.

17. SALIENT FACTS OF PHYSICAL GEODESY.

a. Area of earth's surface, areas of continents, area of oceans.*

								Square miles.
Total area of earth's surface							•	196 940 000
Area o	continent o	f Europe.			•	•		3820 000
66	"	Asia		•	•	•	•	17 230 00 0
66	66	Africa .	•	•				11 480 000
66	66	Australia	•					3 406 000
**	"							15950000
		tinents .						
Total	area of oce	ans		•	•		•	145 054 000

b. Average heights of continents and depths of oceans.†

								Feet.	Metres.
Average	height of	continent	of Europe					<u>980</u>	300
"	"	"	Asia .	•				1640	500
"	"	"	Africa				•	1640	500
"'	"	"	Australi	a				820	250
"	"	"	America	•				1340	410
Average	height of	all	• • • •	•	•	•	•	1440	440
								Feet.	Metres.
Average	depth of A	Atlantic C	cean	•				12 100	3680
"	"	Pacific Oc	ean					12700	3890
"	"	Indian Oc	ean					11 000	3340
Average	depth of a	.11		•	•	•	•	11 300	3440

c. Volume, surface density, mean density, and mass of earth.

Volume of earth $= 259\,880\,000\,000$ cubic miles.

== 1 083 200 000 000 cubic kilometres.

= 260×10^9 cubic miles (about).

= 108×10^{10} cubic kilometres (about).

Surface density of earth = $2.56 \pm 0.16 \ddagger$ Mean density of earth = 5.576 ± 0.016 .

* Derived from relative areas given in Helmert's Geodäsie, Band II. p. 313.

† Helmert's Geodäsie, Band II. p. 313.

[‡] These densities are given by Professor Wm. Harkness in his memoir on *The Solar Parallax* and *Related Constants*. The surface density applies to that portion of the earth's crust which lies above and within a shell ten miles thick, the lower surface of this shell being ten miles below sea level. Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62° F.),

```
Mass of earth * = 13 284 \times 10<sup>21</sup> pounds.
= 6 642 \times 10<sup>18</sup> tons (of 2000 lbs.).
= 60 258 \times 10<sup>20</sup> kilogrammes.
```

d. Principal moments of inertia and energy of rotation of earth.

M = mass of earth,

A = moment of inertia of earth about an axis in its equator,

C = moment of inertia about axis of rotation,

a = equatorial axis of earth,

 ω = angular velocity of earth,

= (2 $\pi/86164$) for mean solar second as unit of time.

Then †

$$A = 0.325 Ma^2,$$

 $C = 0.326 Ma^2.$

Energy of rotation of earth = $\frac{1}{2} \omega^2 C$.

 $= 0.163 \omega^2 Ma^2.$ = 504 × 10²⁸ foot-poundals. = 217 × 10²⁶ kilogramme-metres. = 212 × 10⁸⁵ ergs.

References.

The most exhaustive treatise on the theory of geodesy is found in "Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie," von Dr. F. R. Helmert. Leipzig: B. G. Teubner; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excellent work on the practical as well as theoretical features of the subject is "Die geodätischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae; autorisirte deutsche Ausgabe, von E. Lamp. Berlin: Robert Oppenheim, 8vo, 1878. Of works in English the most comprehensive is "Geodesy," by A. R. Clarke. Oxford : The Clarendon Press, 8vo, 1880.

* The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about 66×10^{14} tons.

 \dagger The values of A and C are those given by Harkness, *loc. cit.*, but they are here abridged to three places of decimals.

lxvi

ASTRONOMY.

I. THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE.

THE celestial sphere is a sphere to which it is convenient to refer stars and other celestial objects. Its centre is assumed to be coincident with the eye of the observer, and the objects referred to it are supposed to lie in its surface. The orientation of this sphere is defined by its equator, which is assumed to be parallel to the earth's equator. The equator is thus the principal plane of reference. Other planes of reference are the plane of the horizon, which is perpendicular to the plumb line at the place; the meridian, which is a plane through the place and the earth's axis of rotation; the prime-vertical, which is a vertical plane at the place at right angles to the meridian; and the ecliptic, which is a plane parallel to the plane of the earth's orbit. These planes cut the surface of the sphere in great circles called the equator, the horizon, the meridian, etc. The points on the sphere defined by the intersection of the meridians, or the points where the axis of the equator pierces the sphere, are called the poles. Similarly, the prolongation of the plumb line upwards pierces the sphere in the zenith, and its prolongation downwards pierces the sphere in the nadir. Great circles passing through the zenith are called vertical circles.

2. SPHERICAL CO-ORDINATES.

a. Notation.

The position of a celestial body may be defined by several systems of co-ordinates. The most important of these in practical astronomy are the azimuth and altitude system and the hour angle and declination system. In the first of these the azimuth of a star or other body is the angle between the meridian plane of the place and a vertical plane through the star. It is measured, in general, from the south around by the west through 360° . The altitude of a star is its angular distance above the horizon, and its zenith distance is the complement of the altitude. In the second system the hour angle of a star is the angle between the meridian plane of the place and a meridian plane through the star. It is measured towards the west through 360° . The declination of a star is its angular distance above or below the equator; the complement of the declination is called the polar distance.

The angular distance of the pole above the horizon is equal to the zenith distance of the equator, or to the latitude of the place. Likewise, the altitude of the equator and the zenith distance of the pole are each equal to the complement of the latitude at any place.

ASTRONOMY.

These quantities are usually designated by the following notation : --

A = the azimuth of a star or object, h = its altitude, $z = \text{its zenith distance} = 90^{\circ} - h,$ t = its hour angle, $\delta = \text{its declination,}$ $p = \text{its polar distance} = 90^{\circ} - \delta,$ q = the parallactic angle, or angle at the star between the pole and the zenith,

 ϕ = the latitude of the place of observation.

b. Altitude and azimuth in terms of declination and hour angle.

The fundamental relations for this problem are —

$$\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t,$$

$$\cos h \cos A = -\cos \phi \sin \delta + \sin \phi \cos \delta \cos t,$$

$$\cos h \sin A = \cos \delta \sin t.$$
(1)

When it is desired to compute both A and h by means of logarithms, the most convenient formulas are,

$$m \sin M = \sin \delta, \qquad \tan M = \frac{\tan \delta}{\cos t}, \qquad \tan M = \frac{\tan \delta}{\cos t}, \qquad (2)$$

$$\sin h = m \cos (\phi - M), \qquad \tan A = \frac{\tan t \cos M}{\sin (\phi - M)}, \qquad (2)$$

$$\cos h \cos A = m \sin (\phi - M), \qquad \tan h = \frac{\cos A}{\tan (\phi - M)}.$$

 $A > 180^{\circ}$ when $t > 180^{\circ}$ and $A < 180^{\circ}$ when $t < 180^{\circ}$.

For the computation of A and z separately, the following formulas are useful:

$$\tan A = -\frac{\sin t}{\cos \phi \tan \delta (1 - \tan \phi \cot \delta \cos t)}$$

$$= -\frac{a \sin t}{1 - b \cos t},$$
(3)
$$a = \sec \phi \cot \delta, \quad b = \tan \phi \cot \delta.$$

where

Formulas (3) are especially appropriate for the computation of a series of azimuths of close circumpolar stars, since a and b will be constant for a given place and date.

$$\cos z = \cos (\phi \sim \delta) - 2 \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$\sin^2 \frac{1}{2} z = \sin^2 \frac{1}{2} (\phi \sim \delta) + \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$(\phi \sim \delta) = \phi - \delta, \text{ for } \phi > \delta$$

$$= \delta - \phi, \text{ for } \phi < \delta.$$
(4)

lxviii

For logarithmic application of (4) we may write

$$m^{2} = \cos \phi \cos \delta, \qquad n^{2} = \sin^{2} \frac{1}{2} (\phi \sim \delta),$$

$$\tan N = \frac{m}{n} \sin \frac{1}{2} t, \qquad (5)$$

$$\sin \frac{1}{2} z = \frac{n}{\cos N} = \frac{m}{\sin N} \sin \frac{1}{2} t.$$

c. Declination and hour angle in terms of altitude and azimuth.

The fundamental relations for this case are

$$\sin \delta = \sin \phi \sin h - \cos \phi \cos h \cos A,$$

$$\cos \delta \cos t = \cos \phi \sin h + \sin \phi \cos h \cos A,$$

$$\cos \delta \sin t = \cos h \sin A.$$
(1)

For logarithmic computation by means of an auxiliary angle M one may write

 $m \sin M = \cos h \cos A, \qquad \tan M = \cot h \cos A,$ $m \cos M = \sin h,$ $\sin \delta = m \sin (\phi - M), \qquad \tan t = \frac{\tan A \sin M}{\cos (\phi - M)},$ $\cos \delta \cos t = m \cos (\phi - M),$ $\cos \delta \sin t = \cos h \sin A, \qquad \tan \delta = \tan (\phi - M) \cos t.$ (2)

d. Hour angle and azimuth in terms of zenith distance.

$$\cos t = \frac{\cos z - \sin \phi \sin \delta}{\cos \phi \cos \delta}.$$

 $\tan^2 \frac{1}{2} t = \frac{\sin (\sigma - \phi) \cos (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$

$$\cos A = \frac{\sin \phi \cos z - \sin \delta}{\cos \phi \sin z}$$

 $\tan^2 \frac{1}{2} A = \frac{\sin (\sigma - \phi) \cos (\sigma - z)}{\cos \sigma \sin (\sigma - \delta)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$

e. Formulas for parallactic angle.

$$\cos z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos t,$$

$$\sin z \cos q = \cos \delta \sin \phi - \sin \delta \cos \phi \cos t,$$

$$\sin z \sin q = \cos \phi \sin t,$$

$$\sin \delta = \cos z \sin \phi + \sin z \cos \phi \cos t,$$

$$\cos \delta \cos q = \sin z \sin \phi + \cos z \cos \phi \cos A,$$

$$\cos \delta \sin q = \cos \phi \sin A.$$
(1)

The first three of these are adapted to logarithmic computation as follows :----

whence

$$n \sin N = \cos \phi \cos t,$$

$$n \cos N = \sin \phi,$$

$$\cos z = n \sin (\delta + N),$$

$$\sin z \cos q = n \cos (\delta + N),$$

$$\sin z \sin q = \cos \phi \sin t;$$

$$\tan N = \cot \phi \cos t,$$

$$\tan z \sin q = \frac{\tan t \sin N}{\sin (\delta + N)},$$

$$\tan z \cos q = \cot (\delta + N).$$
(2)

A similar adaptation results for the last three of equations (1) by interchanging δ and z. The equations (2) give both z and q in terms of ϕ , δ , and t, without ambiguity, since tan z is positive for stars above the horizon.

If A, z, and q are all required from ϕ , δ , and t, they are best given by the Gaussian relations

f. Hour angle, azimuth, and zenith distance of a star at elongation.

In this case the parallactic angle is 90° and the required quantities are given by the formulas

$$\cos t = \frac{\tan \phi}{\tan \delta},$$

$$\sin A = \frac{\cos \delta}{\cos \phi},$$

$$\cos z = \frac{\sin \phi}{\sin \delta}.$$

(1)

When all of the quantities t, A, and z are to be computed the following formulas are more advantageous: —

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\sin t = \frac{K}{\cos \phi \sin \delta}, \quad \cos A = \frac{K}{\cos \phi}, \quad \sin z = \frac{K}{\sin \delta}, \quad (2)$$

$$\tan t = \frac{K}{\sin \phi \cos \delta}, \quad \tan A = \frac{\cos \delta}{K}, \quad \tan z = \frac{K}{\sin \phi}.$$

g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical.

In this case the azimuth angle is 90° and the required quantities are given by the formulas

lxx

$$\cos t = \frac{\tan \delta}{\tan \phi},$$

$$\cos z = \frac{\sin \delta}{\sin \phi},$$

$$\sin q = \frac{\cos \phi}{\cos \delta};$$

(1)

or, if all of them are to be computed, by the formulas

$$K^{2} = \sin (\phi + \delta) \sin (\phi - \delta),$$

$$\sin t = \frac{K}{\sin \phi \cos \delta}, \quad \sin z = \frac{K}{\sin \phi}, \quad \cos q = \frac{K}{\cos \delta},$$

$$\tan t = \frac{K}{\cos \phi \sin \delta}, \quad \tan z = \frac{K}{\sin \delta}, \quad \tan q = \frac{\cos \phi}{K}.$$
(2)

For special accuracy the following group will be preferred : ---

$$\tan^{2} \frac{1}{2} t = \frac{\sin (\phi - \delta)}{\sin (\phi + \delta)},$$

$$\tan^{2} \frac{1}{2} z = \frac{\tan \frac{1}{2}(\phi - \delta)}{\tan \frac{1}{2}(\phi + \delta)},$$

$$\tan^{2} (45^{\circ} - \frac{1}{2}q) = \tan \frac{1}{2}(\phi + \delta) \tan \frac{1}{2}(\phi - \delta).$$
(3)

h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting.

In this case the zenith distance of the star is 90° , and the required quantities are given by

$$\cos t = -\tan \phi \tan \delta,$$

$$\cos A = -\frac{\sin \delta}{\cos \phi};$$

or by

$$\tan^2 \frac{1}{2} t = \frac{\cos (\phi - \delta)}{\cos (\phi + \delta)},$$
$$\tan^2 \frac{1}{2} A = \frac{\tan \frac{1}{2}(90^\circ - \phi + \delta)}{\tan \frac{1}{2}(90^\circ - \phi - \delta)}.$$

On account of refraction, the values of t and A given by these formulas are subject to the following corrections, to wit:—

$$\Delta t = \frac{R}{\cos \phi \cos \delta \sin t}, \quad \Delta A = \frac{\tan \phi}{\sin A} R,$$

where R is the refraction in the horizon. Thus the actual values of the hour angle and azimuth at the time of rising or setting of a star are

$$t + \Delta t$$
 and $A + \Delta A$.

i. Differential formulas.

The general differential relations for the altitude and azimuth and the declination and hour angle systems of coördinates are : ---

$$dz = -\cos q \, d\delta + \sin q \cos \delta \, dt + \cos A \, d\phi, \tag{1}$$

$$\sin z \, dA = \sin q \, d\delta + \cos q \cos \delta \, dt - \cos z \sin A \, d\phi. \tag{2}$$

$$d\delta = -\cos q \, dz + \sin q \sin z \, dA + \cos t \, d\phi, \tag{2}$$

$$\cos \delta \, dt = \sin q \, dz + \cos q \sin z \, dA + \sin \delta \sin t \, d\phi. \tag{2}$$

The following values derived from (1) are of interest as showing the dependence of z and A on t in special cases: -

		$\left(\frac{dz}{dt}\right)$		$\left(\frac{dA}{dt}\right)$
For a star in the meridian	=	o	, =	$\frac{\cos\delta}{\sin z}$
For a star in the prime vertical	=	cos ¢	, =	sin φ,
For a star at elongation	=	cos δ	, =	о.

3. Relations of Different Kinds of Time used in Astronomy.

a. The sidereal and solar days.

The sidereal day is the interval between two successive transits of the vernal equinox over the same meridian. The sidereal time at any instant is the hour angle of the vernal equinox reckoned from the meridian towards the west from o to 24 hours. The sidereal time at any place is o when the vernal equinox is in the meridian of that place.

The solar day is the interval between two successive transits of the sun across any meridian; and the solar time at any instant is the hour angle of the sun at that instant. The solar day begins at any place when the sun is in the meridian of that place.

The mean solar day is the interval between two successive transits over the same meridian of a fictitious sun, called the mean sun, which is assumed to move uniformly in the equator at such a rate that it returns to the vernal equinox at the same instant with the actual sun.

Time reckoned with respect to the actual sun is called apparent time, while that reckoned with respect to the mean sun is called mean time. The difference between apparent and mean time, which amounts at most to about 16^m , is called the equation of time. This quantity is given for every day in the year in ephemerides.

The sidereal time when a star or other object crosses the meridian is called the right ascension of the object. The right ascension of the mean sun is also called the sidereal time of mean noon. This time is given for every day in the year in ephemerides for particular meridians, and can be found for any meridian by allowing for the difference in longitude.

The time to which ephemerides and most astronomical calculations are referred

ASTRONOMY.

is the solar day, beginning at noon, and divided to hours numbered continuously from o^{h} to 24^{h} . This is called astronomical time; and such a day is called the astronomical day. It begins, therefore, 12 hours later than the civil day.

b. Relation of apparent and mean time.

A = apparent time = hour angle of real sun, M = mean time = hour angle of mean sun, E = equation of time.

$$M = A + E.$$

In the use of this relation, E may be most conveniently derived (by interpolation for the place of observation) from an ephemeris.

c. Relation of sidereal and mean solar intervals of time.

I =interval of mean solar time,

I' =corresponding interval in sidereal time,

r = the ratio of the tropical year expressed in sidereal days to the tropical year expressed in mean solar days

$$=\frac{366.2422}{365.2422} = 1.002738.$$

$$I' = rI = I + (r - 1) I = I + 0.002738 I$$

$$I = r^{-1} I' = I' - (1 - r^{-1}) I' = I' - 0.002730 I'.$$

Tables for making such calculations are usually given in ephemerides (see, for example, the American Ephemeris). Short tables for this purpose are Tables 34 and 35 of this volume.

Frequent reference is made to the relations

 24^{h} sidereal time = 23^{h} 56^{m} 04.°091 solar time, 24^{h} mean time = 24^{h} 0 3^{m} 56.°555 sidereal time.

d. Interconversion of sidereal and mean solar time.

 $T_m =$ mean time at any place,

- $T_s =$ corresponding sidereal time,
 - = right ascension of meridian of the place,
- A = right ascension of mean sun for place and date,
 - = sidereal time of mean noon for place and date.

 $T_s = A + T_m$ expressed in sidereal time.

 $T_m = (T_s - A)$ expressed in mean time.

The quantity \mathcal{A} is given in the ephemerides for particular meridians, and can be found by interpolation for any meridian whose longitude with respect to the meridian of the ephemeris is known. The formulas assume that \mathcal{A} is taken out of the ephemeris for the next preceding mean noon.

e. Relation of sidereal time to the right ascension and hour angle of a star.

- $T_s =$ sidereal time at any place,
- = right ascension of the meridian of the place,
- a = right ascension of a star,
- t = the hour angle of the star at the time T_{i} .

$$T_s = a + t, \qquad t = T_s - a.$$

4. DETERMINATION OF TIME.

a. By meridian transits.

A determination of time consists in finding the correction to the clock, chronometer, or watch used to record time. If \mathcal{I}_0 denote the true time at any place of an event, \mathcal{T} the corresponding observed clock time, and $\Delta \mathcal{T}$ the clock correction,

$$T_0 = T + \Delta T.$$

The simplest way to determine the clock correction is to observe the transit of a star, whose right ascension is known, across the meridian. In this case the true time $T_0 = a$, the right ascension of the star; and if T is the observed clock time of the transit, $\Delta T = a - T$.

Meridian transits of stars may be observed by means of a theodolite or transit instrument mounted so that its telescope describes the meridian when rotated about its horizontal axis. The meridian transit instrument is specially designed for this purpose, and affords the most precise method of determining time.*

Since it is impossible to place the telescope of such an instrument exactly in the meridian, it is essential in precise work to determine certain constants, which define this defect of adjustment, along with the clock correction. These constants are the azimuth of the telescope when in the horizon, the inclination of the horizontal axis of the telescope, and the error of collimation of the telescope.[†]

Let

a = azimuth constant, b = inclination or level constant,c = collimation constant.

a is considered plus when the instrument points east of south; *b* is plus when the west end of the rotation axis is the higher; and *c* is intrinsically plus when the star observed crosses the thread (or threads) too soon from lack of collimation. (The latter constant is generally referred to the clamp or circle on the horizontal axis of the instrument.)

* The best treatise on the theory and use of this instrument is to be found in Chauvenet's *Manual of Spherical and Practical Astronomy*, which should be consulted by one desiring to go into the details of the subject.

t Other equivalent constants may be used, but those given are most commonly employed.

 $\phi = \text{latitude of the place,}$ $\delta = \text{declination of star observed,}$ a = right ascension of star observed, T = observed clock time of star's transit, $\Delta T = \text{the clock correction at an assumed epoch } T_0,$ r = the rate of the clock, or other timepiece, $A = \frac{\sin (\phi - \delta)}{\cos \delta} = \text{the "azimuth factor,"}$ $B = \frac{\cos (\phi - \delta)}{\cos \delta} = \text{the "level factor,"}$ $C = \frac{1}{\cos \delta} = \text{the "collimation factor."}$

Then, when a, b, c are small (conveniently less than 10^s each, and in ordinary practice less than 1^s each),

$$T + \Delta T + Aa + Bb + Cc + r(T - T_0) = a.$$

This is known as Mayer's formula for the computation of time from star transits.

The quantity Bb is generally observed directly with a striding level. Assuming it to be known and combined with T, the above equation gives

$$\Delta T + Aa + Cc + r (T - T_0) = a - T. \tag{1}$$

This equation involves four unknown quantities, ΔT , *a*, *c*, and *r*; so that in general it will be essential to observe at least four different stars in order to get the objective quantity ΔT . Where great precision is not needed, the effect of the rate, for short intervals of time, may be ignored, and the collimation *c* may be rendered insignificant by adjustment. Then the equation (1) is simplified in

$$\Delta T + Aa = a - T. \tag{2}$$

This shows that observations of two stars of different declinations will suffice to give ΔT . Since the factor A is plus for stars south of the zenith (in north latitude) and minus for stars north of the zenith, if stars be so chosen as to make the two values of A equal numerically but of opposite signs, ΔT will result from the mean of two equations of the form (2). With good instrumental adjustments (δ and c small), this simple sort of observation with a theodolite will give ΔT to the nearest second.

A still better plan for approximate determination of time is to observe a pair of north and south stars as above, and then reverse the telescope and observe another pair similarly situated, since the remaining error of collimation will be partly if not wholly eliminated. Indeed, a well selected and well observed set of four stars will give the error of the timepiece used within a half second or less. This method is especially available to geographers who may desire such an approximate value of the timepiece correction for use in determining azimuth. It will suffice in the application of the method to set up the instrument (theodolite or transit) in the vertical plane of Polaris, which is always close enough to the meridian. The determination will then proceed according to the following programme :—

ASTRONOMY.

- 1. Observe time of transit of a star south of zenith,
- 2. Observe time of transit of a star north of zenith.

Reverse telescope,

- 3. Observe time of transit of another star south of zenith,
- 4. Observe time of transit of another star north of zenith.

Each star observation will give an equation of the form (r), and the mean of the four resulting equations is

$$\Delta T + a \frac{\Sigma A}{4} + c \frac{\Sigma C}{4} + r \frac{\Sigma (T - T_0)}{4} = \frac{\Sigma (a - T)}{4}.$$

Now the coefficient of r in this equation may be always made zero by taking for the epoch T_0 the mean of the observed times T. Likewise, ΣA and ΣC may be made small by suitably selected stars, since two of the A's and C's are positive and two negative. The value $\frac{1}{4} \Sigma(a - T)$ is thus always a close approximation to ΔT for the epoch $T_0 = \frac{1}{4} \Sigma T$, when ΣA and ΣC approximate to zero. But if these sums are not small, approximate values of a and c may be found from the four equations of the form (r), neglecting the rate, and these substituted in the above formula will give all needful precision.

For refined work, as in determining differences of longitude, several groups of stars are observed, half of them with the telescope in one position and half in the reverse position, and the quantities ΔT , *a*, *c*, and *r* are computed by the method of least squares. In such work it is always advantageous to select the stars with a view to making the sums of the azimuth and collimation coefficients approximate to zero, since this gives the highest precision and entails the simplest computations.*

b. By a single observed altitude of a star.

An approximate determination of time, often sufficient for the purposes of the geographer, may be had by observing the altitude or zenith distance of a known star. The method requires also a knowledge of the latitude of the place.

Let

- $z_1 =$ the observed zenith distance of the star,
- R = the refraction,
- z = the true zenith distance of the star,
 - $= z_1 + R$,
- a, δ = the right ascension and declination of the star,
 - t = hour angle of star at time of observation,
 - T = observed time when z_1 is measured,
- $\Delta T =$ correction to timepiece,
 - $\phi =$ latitude of place.

Then the hour angle t may be computed by

$$\tan^{4} \frac{1}{2} t = \frac{\sin (\sigma - \phi) \sin (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2}(\phi + \delta + z).$$

* For details of theory and practice in time work done according to this plan see Bulletin 49, U. S. Geological Survey. Having the hour angle the clock correction ΔT is given by

$$\Delta T = a + t - T_{t}$$

in which all terms must be expressed in the same unit; *i. e.*, in sidereal or in mean time.

The refraction R may be taken from Table 31.

The most advantageous position of the star observed, so far as the effect of an error in the measured quantity z_1 is concerned, is in the prime vertical, but stars near the horizon should be avoided on account of uncertainties in refraction. The least favorable position of the star is in the meridian.

Compared with the preceding method the present method is inferior in precision, but it is often available when the other cannot be applied.

c. By equal altitudes of a star.

This method is an obvious extension of the preceding method, and has the advantage of eliminating the effect of constant instrumental errors in the measured altitudes or zenith distances. Thus it is plain that the mean of the times when a (fixed) star has the same altitude east and west of the meridian, whether one can measure that altitude correctly or not, is the time of meridian transit.

This method may, therefore, give a good approximation to the timepiece correction when nothing better than an engineer's transit, whose telescope can be clamped, is available. When the instrument has a vertical circle (or when a sextant is used) a series of altitudes may be observed before meridian passage of the star, and a similar series in the reverse order with equal altitudes respectively after meridian passage. The half sums of the times of equal altitudes on the two sides of the meridian will give a series of values for the time of meridian transit from which the precision attained may be inferred.

This method is frequently applied to the sun, observations being made before and after noon. For the theory of the corrections essential in this case on account of the changing position of the sun, on account of inequalities in the observed altitudes, etc., the reader must be referred to special treatises on practical astronomy.*

5. DETERMINATION OF LATITUDE.

a. By meridian altitudes.

The readiest method of determining the latitude of a place is to measure the meridian zenith distance or altitude of a known star. When precision is not required this process is a very simple one, since it is only essential to follow a (fixed) star near the meridian until its altitude is greatest, or zenith distance least. Thus, if the observed zenith distance is z_1 , the true zenith distance z, and the refraction R,

$$z=z_1+R;$$

^{*} The best work of this kind is Chauvenet's *Manual of Spherical and Practical Astronomy*. It should be consulted by all persons desiring a knowledge of the details of practical astronomy.

ASTRONOMY.

and if the declination of the star is δ and the latitude of the place ϕ ,

 $\phi = \delta \pm z$

according as the star is south or north of the zenith.

A more accurate application of the same principle is to observe the altitudes of a circumpolar star at upper and lower culmination (above and below the pole). The mean of these altitudes, corrected for refraction, is the latitude of the place. This process, it will be observed, does not require a knowledge of the star's declination.

b. By the measured altitude of a star at a known time.

h = measured altitude corrected for refraction, $T_s =$ observed sidereal time, $a, \delta =$ right ascension and declination of star.

t = hour angle of star,

 $\phi =$ latitude of place.

Then ϕ may be computed by means of the following formulas : ---

$$t = T_{\bullet} - \alpha,$$

$$\tan \beta = \frac{\tan \delta}{\cos t}, \quad \cos \gamma = \frac{\sin \hbar \sin \beta}{\sin \delta},$$

$$\phi = \beta \pm \gamma.$$

In the application of these β may be taken numerically less than 90°, and since t may also be taken less than 90°, β may be taken with the same sign as δ . γ is indeterminate as to sign analytically, but whether it should be taken as positive or negative can be decided in general by an approximate knowledge of the latitude, which is always had except in localities near the equator.

The most advantageous position of a star in determining latitude by this method is in the meridian, and the least advantageous in the prime vertical. When a series of observations on the same star is made, they should be equally distributed about the meridian ; and when more than one star is observed it is advantageous to observe equal numbers of them on the north and south of the zenith.

The application of this method to the pole star is especially well adapted to the means available to the geographer and engineer, namely, a good theodolite and a good timepiece. In this case the following simple formula for the latitude may be used :---

$$\phi = h - p \cos t + \frac{1}{2} p^2 \sin t'' \sin^2 t \tan h,$$

where p is the polar distance of Polaris in seconds (about 5400"), and the other symbols have the same meaning as defined above. Tables giving the logarithms of p and $\frac{1}{2}p^2 \sin t''$ are published in the American Ephemeris.

lxxviii

c. By the zenith telescope.

The zenith telescope furnishes the most precise means known for the determination of the latitude of a place. For the theory of the instrument and method when applied to refined work the reader must be referred to special treatises.* It will suffice here to state the principle of the method, which may sometimes be advantageously applied by the geographer. Let z_s be the meridian zenith distance of a star south of the zenith, and z_n the meridian zenith distance of another star north of the zenith. Let δ_s and δ_n denote the declinations of these stars respectively. Then

$$z_s = \phi - \delta_s, \\ z_n = \delta_n - \phi,$$

whence

$$\phi = \frac{1}{2} \left(\delta_s + \delta_n \right) + \frac{1}{2} \left(z_s - z_n \right).$$

It appears, therefore, that this method requires only that the difference $(z_s - z_n)$ be measured. Herein lies the advantage of the method, since that difference may be made small by a suitable selection of pairs of stars. With the zenith telescope the stars are so chosen that the difference $(z_s - z_n)$ may be measured by means of a micrometer in the telescope.

The essential principles and advantages of this method may be realized also with a theodolite, or other telescope, to which a vertical circle is attached, the difference $(z_s - z_n)$ being measured on the circle; and a determination of latitude within 5" or less is thus easy with small theodolites of the best class (*i. e.*, with those whose circles read to 10" or less by opposite verniers or microscopes).

6. Determination of Azimuth.

a. By observation of a star at a known time.

 $T_s =$ sidereal time of observation,

$$\alpha, \delta =$$
 right ascension and declination of star observed,

t =hour angle of star,

$$= T_s - a$$
,

- $\phi =$ latitude of place,
- A = azimuth of the star at the time T_s counted from the south around by the west through 360° .

The azimuth A may be computed by the formulas

$$a = \sec \phi \cot \delta, \qquad b = \tan \phi \cot \delta, \qquad (1)$$
$$\tan A = -\frac{a \sin t}{1 - b \cos t}$$

The angle A will fall in the same semicircle as t, and A is thus determined by its tangent without ambiguity. The quantities a and b will be sensibly constant for

* Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best.

a given star and date; and hence they need be computed but once for a series of observations on the same star on one date.

The effects of small errors Δt , $\Delta \phi$, and $\Delta \delta$ in the assumed time, latitude, and declination are expressed by

$$\frac{\cos\delta\cos q}{\sin z}\,\Delta t, \qquad -\sin A\,\cot z\,\Delta\phi, \qquad \frac{\sin q}{\sin z}\,\Delta\delta,$$

respectively, where z and q are the zenith distance and parallactic angle of the star. Hence the effect of Δt will vanish for a star at elongation; the effect of $\Delta \phi$ vanishes for a star in the meridian, and is always small (in middle latitudes) for a close circumpolar star; the effect of $\Delta \delta$ vanishes for a star in the meridian. It appears advantageous, therefore, to observe for azimuth (in middle latitudes) close circumpolar stars at elongations, since the effect of the time error is then least, and the effects of errors in the latitude and declination are small and may be eliminated entirely by observing the same star at both elongations.

The hour angle t_e , the azimuth A_e , and the altitude h_e of a star at elongation are given by the formulas (2) of section 2, f. Those best suited to the purpose are

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\tan t_{e} = \frac{K}{\sin \phi \cos \delta}, \quad \tan A_{e} = \frac{\cos \delta}{K}, \quad \tan h_{e} = \frac{\sin \phi}{K}.$$
 (2)

Knowing the time of elongation of a close circumpolar star, it suffices for many purposes to observe the angle between the star and some reference terrestrial mark at or in the vicinity of that time.

For precise determinations of azimuth it is customary to observe a star near its elongation repeatedly, thus obtaining a series of results whose mean will be sensibly free from errors of observation and errors due to instrumental defects.

The computation of the azimuth A may be made accurately in all cases by the formulas (1); but when a close circumpolar star is observed near elongation, it may be more convenient to use the following formulas: —

(3)

 $\Delta t = (t - t_e)$, or the interval before or after elongation at the time of observation,

 $\Delta A = (A - A_c)$, or the difference in azimuths of the star at the time of elongation and at the time of observation,

$$\Delta \mathcal{A}'' = \frac{(15)^2}{2 \rho''} \frac{\sin \delta \cos \delta}{\sin t_e \cos \phi} (\Delta t^s)^2 \pm \frac{(15)^8}{2 (\rho'')^2} \frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} (\Delta t^s)^8.$$

* To the same order of approximation one may write in the first term of this expression

$$\frac{(15)^2}{2 \rho''} (\Delta t^s)^2 = \rho'' 2 \sin^2 \frac{1}{2} \Delta t = \frac{2 \sin^2 \frac{1}{2} \Delta t}{\sin t''},$$

which latter is the most convenient form when tables giving $\log \frac{(2 \sin^2 \frac{1}{2} \Delta t)}{\sin t''}$ for the argument Δt in time are at hand. Such tables are given in Chauvenet's Manual of Spherical and Practical Astronomy (for full title see p. lxxxii), and in Formeln und Hülfstafeln für Geographische Ortsbestimmungen, von Dr. Th. Albrecht. Leipzig: Wilhelm Engelmann, 4to, 2d ed., 1879.

ASTRONOMY.

This last formula gives ΔA in seconds of arc when Δt is expressed in seconds of time; Δt is considered positive in all cases (in the use of the formula), and with this convention the positive sign is used when the star is between either elongation and upper culmination, and the negative sign when the star is between either elongation and lower culmination. For a given star, place, and date the coefficients of $(\Delta t^{e})^2$ and $(\Delta t^{e})^8$ will be sensibly constant and their logarithms will thus be constant for a series of observations of a star on any date. By reason of the large factors $(\rho'' = 206\ 264.''8)^2$ and $\tan t_e$ in the denominator of the second term, it will be very small unless Δt^e is large. Hence this term may often be neglected. Using both terms, the formula will give ΔA for Polaris to the nearest o.''or when $\Delta t < 40^m$ and when observations are made in middle latitudes.

By reference to formulas (2) of section 2, f, it is seen that

$$\frac{\sin \delta \cos \delta}{\sin t_e \cos \phi} = \frac{\sin^2 \delta \cos \delta}{K},$$
$$\frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} = \frac{\sin^2 \delta \cos^2 \delta \sin \phi}{K^2},$$
$$K^2 = \sin (\delta + \phi) \sin (\delta - \phi).*$$

b. By an observed altitude of a star.

h == true altitude of star observed; *i. e.*, the observed altitude less the refraction,
 φ == latitude of place,
 p == polar distance of star,

A = azimuth of star.

$$\tan^2 \frac{1}{2}A = \frac{\sin (\sigma - \phi) \sin (\sigma - \hbar)}{\cos \sigma \cos (\sigma - \rho)},$$
$$\sigma = \frac{1}{2}(\phi + \hbar + \rho).$$

The most advantageous position of the star, on account of possible error in the observed value of h, is that in which sin A is a maximum. This position is then at elongation for stars which elongate, in the prime vertical for stars which cross this great circle, and in the horizon for a star which neither elongates nor crosses the prime vertical. A star will elongate when $p < 90^\circ - \phi$; it will cross the prime vertical when p lies between $90^\circ - \phi$ and 90° ; and it will neither elongate nor cross the prime vertical when $p > 90^\circ$, or when the declination (δ) of the star is negative.

c. By equal altitudes of a star.

By this method, when a fixed star is observed first east of the meridian and then west of the meridian at the same altitude, the direction of the meridian will

* In precise work the computed azimuth requires the following correction for daily aberration, namely :----

$$\Delta A = -0.''_{32} \frac{\cos \phi}{\sin z} \cos A,$$

where A is to be reckoned from the south by way of the west through 360°.

ASTRONOMY.

obviously be given by the mean of the azimuth circle readings for the two observed directions. This process will thus give the direction of the meridian free from the effect of any instrumental errors common to the equal altitudes observed. Neither does it require any knowledge of the star's position (right ascension and declination). It is therefore available to one provided with nothing but an instrument for measuring altitudes and azimuths, and is susceptible of considerable precision when a series of such equal altitudes is carefully referred to a terrestrial mark.

When the sun is observed, it is essential to take account of its change in declination between the first and the second observation. Let A_1 and A_2 be the true azimuths counted from the meridian toward the east and west respectively at the times t_1 and t_2 of the two observations. Also, let $\Delta\delta$ be the increase in declination of the sun in the interval $(t_2 - t_1)$. Then

$$A_2 - A_1 = \frac{\Delta \delta}{\cos \phi \sin \frac{1}{2}(t_2 - t_1)}.$$

Calling the azimuth circle readings for the east and west observations R_1 and R_2 , respectively, the resulting azimuths are

$$A_{1} = \frac{1}{2}(R_{2} - R_{1}) - \frac{1}{2}(A_{2} - A_{1}),$$

$$A_{2} = \frac{1}{2}(R_{2} - R_{1}) + \frac{1}{2}(A_{2} - A_{1}).$$

References.

Many excellent treatises on spherical and practical astronomy are available. Among these the most complete are the following : —

"A Manual of Spherical and Practical Astronomy," by William Chauvenet. Philadelphia: J. B. Lippincott & Co., 2 vols., 8vo, 5th ed., 1887. "A Treatise on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doolittle. New York: John Wiley & Sons, 8vo, 2d ed., 1888. "Lehrbuch der Sphärischen Astronomie," von F. Brünnow. Berlin: Fred. Dümler, 8vo, 1851. "Spherical Astronomy," by F. Brünnow. Translated by the author from the second German edition. London: Asher & Co., 8vo, 1865.

lxxxii

THEORY OF ERRORS.

I. LAWS OF ERROR.

THE theory of errors is that branch of mathematical science which considers the nature and extent of errors in derived quantities due to errors in the data on which such quantities depend. A law of error is a relation between the magnitude of an error and the probability of its occurrence. The simplest case of a law of error is that in which all possible errors (in the system of errors) are equally likely to occur. An example of such a case is had in the errors of tabular logarithms, natural trigonometric functions, etc.; all errors from zero to a half unit in the last tabular place being equally likely to occur.

When quantities subject to errors following simple laws are combined in any manner, the law of error of the quantity resulting from the combination is in general more complex than that of either component.

Let ϵ denote the magnitude of any error in a system of errors whose law of error is defined by $\phi(\epsilon)$. Then if ϵ vary continuously the probability of its occurrence will be expressed by $\phi(\epsilon)d\epsilon$. If ϵ vary continuously between equal positive and negative limits whose magnitude is *a*, the sum of all the probabilities $\phi(\epsilon)d\epsilon$ must be unity, or

$$\int_{-a}^{+a} \phi(\epsilon) d\epsilon = 1.$$

For the case of tabular logarithms, etc., alluded to above, $\phi(\epsilon) = c$, a constant whose value is $1/(2 \ a) = 1$, since a = 0.5.

For the case of a logarithm interpolated between two consecutive tabular values, by the formula $v = v_1 + (v_2 - v_1) t = v_1 (\mathbf{1} - t) + v_2 t$, where v_1 and v_2 are the tabular values, and t the interval between v_1 and the derived value $v, \phi(\epsilon)$ has the following remarkable forms when the extra decimals (practically the first of them) in $(v_2 - v_1) t$ are retained :—

$$\phi(\epsilon) = \frac{\frac{1}{2} + \epsilon}{(1 - t)t} \text{ for values of } \epsilon \text{ between } -\frac{1}{2} \text{ and } -(\frac{1}{2} - t),$$

$$= \frac{1}{1 - t} \text{ for values of } \epsilon \text{ between } -(\frac{1}{2} - t) \text{ and } +(\frac{1}{2} - t), \quad (1)$$

$$= \frac{\frac{1}{2} - \epsilon}{(1 - t)t} \text{ for values of } \epsilon \text{ between } +(\frac{1}{2} - t) \text{ and } +\frac{1}{2}.$$

It thus appears that $\phi(\epsilon)$ in this case is represented by the upper base and the two sides of a trapezoid.

When, as is usually the practice, the quantity $(v_2 - v_1) t$ is rounded to the nearest unit of the last tabular place, $\phi(\epsilon)$ becomes more complex, but is still represented by a series of straight lines. It is worthy of remark that the latter species of interpolated value is considerably less precise than the former, wherein an additional figure beyond the last tabular place is retained.

When an infinite number of infinitesimal errors, each subject to the law of constant probability and each as likely to be positive as negative, are combined by addition, the law of the resultant error is of remarkable simplicity and generality. It is expressed by

$$\phi(\epsilon) = \frac{h}{\sqrt{\pi}} e^{-k^2 \epsilon^2}$$
(2)

where e is the Napierian base, $\pi = 3.14159$ +, and h is a constant dependent on the relative magnitude of the errors in the system. This is the law of error of least squares. It is the law followed more or less closely by most species of observational errors. Its general use is justified by experience rather than by mathematical deduction.

a. Probable, mean, and average errors.

For the purposes of comparison of different systems of errors following the same law, three different terms are in use. These are the *probable error*,* or that error in the system which is as likely to be exceeded as not; the *mean error*, or that error which is the square root of the mean of the squares of all errors in the system; and the *average error*, which is the average, regardless of sign, of all errors in the system. Denote these errors by ϵ_p , ϵ_m , ϵ_a , respectively. Then in all systems in which positive and negative errors of equal magnitude are equally likely to occur, and in which the limits of error are denoted by -a and +a, the analytical definitions of the probable, mean, and average errors are :--

$$\int_{-a}^{-\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{0} \phi(\epsilon) d\epsilon = \int_{0}^{+\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{+a} \phi(\epsilon) d\epsilon = \frac{1}{4},$$

$$+a + \epsilon_{p}$$

$$\epsilon_{m}^{2} = \int_{-a}^{+a} \phi(\epsilon) \epsilon^{2} d\epsilon, \quad \epsilon_{a} = \int_{-a}^{+a} \phi(\epsilon) \epsilon d\epsilon.$$
(3)

* The reader should observe that the word probable is here used in a specially technical sense. Thus, the probable error is not "the most probable error," nor "the most probable value of the actual error," etc., as commonly interpreted.

lxxxiv

b. Probable, mean, average, and maximum actual errors of interpolated logarithms, trigonometric functions, etc.

When values of logarithms, etc., are interpolated from numerical tables by means of first differences, as explained above, the probable and other errors depend on the magnitude of the interpolating factor. Thus, the interpolated value is

$$v = v_1 + (v_2 - v_1) t$$

where v_1 and v_2 are consecutive tabular values and t is the interpolating factor.

For the species of interpolated value wherein the quantity $(v_2 - v_1) t$ is not rounded to the nearest unit of the last tabular place (or wherein the next figure beyond that place is retained) the maximum possible actual error is 0.5 of a unit of the last tabular place, and formulas (1) and (3) show that the probable, mean, and average errors are given by the following expressions:—

$$\begin{split} \epsilon_p &= \frac{1}{4} (\mathbf{I} - t) & \text{for } t \text{ between } 0 \text{ and } \frac{1}{3}, \\ &= \frac{1}{2} - \frac{1}{2} \sqrt{2t} (\mathbf{I} - t) & \text{for } t \text{ between } \frac{1}{3} \text{ and } \frac{2}{3}, \\ &= \frac{1}{4} t & \text{for } t \text{ between } \frac{2}{3} \text{ and } \mathbf{I}. \end{split}$$
 $\epsilon_m &= \left\{ \frac{\mathbf{I} - (\mathbf{I} - 2t)^4}{96 (\mathbf{I} - t) t} \right\}^{\frac{1}{2}}.$ $\epsilon_a &= \frac{\mathbf{I} - (\mathbf{I} - 2t)^3}{24 (\mathbf{I} - t) t} & \text{for } t \text{ between } 0 \text{ and } \frac{1}{2}, \\ &= \frac{\mathbf{I} - (2t - 1)^3}{24 (\mathbf{I} - t) t} & \text{for } t \text{ between } \frac{1}{2} \text{ and } \mathbf{I}. \end{split}$

It thus appears that the probable error of an interpolated value of the species under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place as *t* increases from 0 to 0.5. Hence such interpolated values are more precise than tabular values.

For the species of interpolated values ordinarily used, wherein $(v_2 - v_1) t$ is rounded to the nearest unit of the last tabular place, the probable, mean, and average errors are greater than the corresponding errors for tabular values. The laws of error for this ordinary species of interpolated value are similar to but in general more complex than those defined by equations (1). It must suffice here to give the practical results which flow from these laws for special values of the interpolating factor t.* The following table gives the probable, mean, average, and maximum actual error of such interpolated values for $t = 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{10}$. It will be observed that t = r corresponds to a tabular value.

* For the theory of the errors of this species of interpolated values see Annals of Mathematics, vol. ii. pp. 54-59.

Interpolating factor t	Probable error ¢p	Mean error ¢m	Average error ¢a	Maximum actual error
I	0.250	0.289	0.250	1/2
12	.292	.408	•333	I
]	.256	•347	.287	ŧ
4	.276	.382	.313	r
]	.268	.370	.303	10
ł	.277	.385	.315	I
}	•274	.380	.311	14
1 B	•279	.389	.318	r
ł	.278	.386	.316	17
10	.281	.392	.320	r

Characteristic Errors of Interpolated Logarithms, etc.

2. The Method of Least Squares.

a. General statement of method.

When the errors to which observed quantities are subject follow the law expressed by

$$\phi(\epsilon) = \frac{h}{\sqrt{\pi}} e^{-h^2 \epsilon^2},$$

a unique method results for the computation of the most probable values of the observed quantities and of quantities dependent on the observed quantities. The method requires that the sum of the weighted squares of the corrections to the observed quantities shall be a minimum,* subject to whatever theoretical conditions the corrections must satisfy. These conditions are of two kinds, namely, those expressing relations between the corrections only, and those expressing relations between the corrections and other unknown quantities whose values are disposable in determining the minimum. A familiar illustration of the first class of conditions is presented by the case of a triangle each of whose angles is measured, the condition being that the sum of the corrections is a constant. An equally familiar illustration of the second class of conditions is found in the case where the sum and difference of two unknown quantities are separately observed; in this case the two unknowns are to be found along with the corrections.

Mathematically, the general problem of least squares may be stated in two

* Hence the term least squares.

equations. Thus, let x, y, z, \ldots be the observed quantities with weights p, q, r, \ldots . Let the corrections to the observed quantities be denoted by $\Delta x, \Delta y$, $\Delta z, \ldots$; so that the corrected quantities are $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$. Let the disposable quantities whose values are to be determined along with the corrections be denoted by ξ, η, ζ, \ldots . Then, the theoretical conditions which must be satisfied by $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$ and by ξ, η, ζ, \ldots may be symbolized by

$$F_n(\xi, \eta, \zeta, \ldots x + \Delta x, y + \Delta y, z + \Delta z, \ldots) = 0.$$
(4)

Subject to the conditions specified by the n equations (4), we must also have

$$p (\Delta x)^{2} + q (\Delta y)^{2} + r (\Delta z)^{2} + \dots = \text{a minimum}$$

$$= u, \text{ say.}$$
(5)

Equations (4) and (5) contain the solution of every problem of adjustment by the method of least squares. Two examples may suffice to illustrate their use.

First, take the case of the observed angles of a triangle alluded to above. Calling the observed angles x, y, z, we have

or

$$x + \Delta x + y + \Delta y + z + \Delta z = 180^{\circ} + \text{spherical excess},$$

$$\Delta x + \Delta y + \Delta z = 180^{\circ} + \text{spherical excess} - (x + y + z)$$

$$= c, \text{ say.}$$

This is the only condition of the form (4). The problem is completely stated, then, in the two equations

$$\Delta x + \Delta y + \Delta z = c$$

$$p (\Delta x)^2 + q (\Delta y)^2 + r (\Delta z)^2 = a \min = u.$$

To solve this problem the simplest mode of procedure is to eliminate one of the corrections by means of the first equation and then make u a minimum. Thus, eliminating Δz , there results

$$u = p (\Delta x)^2 + q (\Delta y)^2 + r (c - \Delta x - \Delta y)^2.$$

The conditions for a minimum of u are : —

$$\frac{\partial u}{\partial \Delta x} = (p+r) \Delta x + r \Delta y - rc = 0,$$

$$\frac{\partial u}{\partial \Delta y} = r \Delta x + (q+r) \Delta y - rc = 0;$$

and these give, in connection with the value $\Delta z = c - \Delta x - \Delta y$,

$$\Delta x = \frac{Q}{p}, \qquad \Delta y = \frac{Q}{q}, \qquad \Delta z = \frac{Q}{r}.$$

where

$$Q = \frac{c}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$$

When the weights are equal, or when p = q = r, the corrections are —

$$\Delta x = \Delta y = \Delta z = \frac{1}{3} c.$$

lxxxviii

Secondly, take the case, also alluded to above, of the observed sum and the observed difference of two numbers. Denote the numbers by ξ and η , the latter being the smaller. Let the observed values of the sum $(\xi + \eta)$ be denoted by $x_1, x_2, \ldots x_m$ and their weights $p_1, p_2, \ldots p_m$ respectively. Likewise, call the observed values of the difference $(\xi - \eta), y_1, y_2, \ldots y_n$, and their weights $q_1, q_2 \ldots q_n$ respectively. Then there will be m + n equations of the type (4), namely :—

$$\begin{aligned} \xi + \eta - (x_1 + \Delta x_1) &= 0, \\ \xi + \eta - (x_2 + \Delta x_2) &= 0, \\ \vdots &\vdots &\vdots \\ \xi + \eta - (x_m + \Delta x_m) &= 0, \\ \xi - \eta - (y_1 + \Delta y_1) &= 0, \\ \xi - \eta - (y_2 + \Delta y_2) &= 0, \\ \vdots &\vdots \\ \xi - \eta - (y_n + \Delta y_n) &= 0; \end{aligned}$$
(a)

and the minimum equation is

$$u = p_1 (\Delta x_1)^2 + p_2 (\Delta x_2)^2 + \ldots + q_1 (\Delta y_1)^2 + q_2 (\Delta y_2)^2 + \ldots = a \min.$$
 (b)

The equations of group (a) give

$$\Delta x_1 = \xi + \eta - x_1,$$

$$\Delta x_2 = \xi + \eta - x_2,$$

$$\dots$$

$$\Delta y_1 = \xi - \eta - y_1,$$

$$\Delta y_2 = \xi - \eta - y_2,$$

(c)

and these values in (b) give

$$u = p_1 (\xi + \eta - x_1)^2 + \ldots + q_1 (\xi - \eta - y_1)^2 + \ldots$$
 (d)

Thus it appears that all conditions will be satisfied if ξ and η are so determined as to make u in (d) a minimum. Hence, using square brackets to denote summation of like quantities, the values of ξ and η must be found from

$$\frac{\partial u}{\partial \xi} = [p + q] \xi + [p - q] \eta - [px + qy] = 0,$$
(e)
$$\frac{\partial u}{\partial \eta} = [p - q] \xi + [p + q] \eta - [px - qy] = 0.$$

Equations (e) give ξ and η , and these substituted in (c) will give the corrections to the observed quantities.

b. Relation of probable, mean, and average errors.

The introduction of the law of error (2) in equations (3) furnishes the following relations, when it is assumed that the limits of possible error are $-\infty$ and $+\infty$:

$$\epsilon_p = 0.6745 \ \epsilon_m = 0.8453 \ \epsilon_a. \tag{6}$$

c. Case of a single unknown quantity.

The case of a single unknown quantity whose observed values are of equal or unequal weight is comprised in the following formulas: —

 $x_1, x_2, \ldots x_m = \text{observed values of unknown quantity,}$ $p_1, p_2, \ldots p_m = \text{the weights of } x_1, x_2, \ldots$ $v_1, v_2, \ldots v_m = \text{most probable corrections to } x_1, x_2, \ldots$ x = most probable value of the unknown quantity,m = the number of independent observations.

Then the conditional equations (4) are

$$\begin{array}{l} x - x_1 = v_1, \\ x - x_2 = v_2, \\ \cdot \cdot \cdot \\ x - x_m = v_m; \end{array}$$

the minimum equation (5) is

$$p_1v_1^2 + p_2v_2^2 + \ldots = [pv^2] = [p(x - x_i)^2] = a \min_{x_i}$$

where $i = 1, 2, \ldots m$, and

$$x = \frac{p_1 x_1 + p_2 x_2 + \dots + p_m x_m}{p_1 + p_2 + \dots + p_m} = \frac{[px]}{[p]}$$

When the weights are equal, $p_1 = p_2 = \ldots = p_m$, and

$$x = \frac{[x]}{m},$$

or the arithmetic mean of the observed values.

Weight of x = [p] when the p's are unequal, = m when the p's are equal.

Mean error of an observed value of weight unity = $\sqrt{\frac{pvv}{m-1}}$ for unequal weights,

$$=\sqrt{\frac{[vv]}{m-1}}$$
 for equal weights.

Mean error of an observed value of weight $p = \sqrt{\frac{[pvv]}{(m-1)p}}$ for unequal weights.

Mean error of
$$x = \sqrt{\frac{[pvv]}{(m-1)[p]}}$$
 for unequal weights,
= $\sqrt{\frac{[vv]}{m(m-1)}}$ for equal weights.

The corresponding probable errors are found by multiplying these values by 0.6745. See equation (6).

A formula for the average error sometimes useful is

Average error
$$= \frac{[\not pv]}{\sqrt{(m-1)[\not p]}}$$
 for unequal weights.
 $= \frac{[v]}{\sqrt{m(m-1)}}$ for equal weights.

In these the residuals v are all taken with the same sign. A sufficient approximation in many cases of equal weights is $\frac{[v]}{m}$; but the above formulas dependent on the squares of the residuals are in general more precise.

An important check on the computation of x is [pv] = o; *i. e.*, the sum of the residuals v, each multiplied by its weight, is zero if the computation is correct.

d. Case of observed function of several unknown quantities ξ , η , ζ

A case of frequent occurrence, and one which includes the preceding case, is that in which a function of several unknown quantities is observed. Thus, for example, the observed time of passage of a star across the middle thread of a transit instrument is a function of the azimuth and collimation of the transit instrument and the error of the timepiece used. In cases of this kind the conditional equations of the type (4) assume the form

$$F(\xi,\eta,\zeta\ldots x+\Delta x)=o;$$

that is, each of them contains but one observed quantity x along with several disposable (disposable in satisfying the minimum equation) quantities ξ , η , ζ

The process of solution in this case consists in eliminating the corrections $\Delta x_1, \Delta x_2, \ldots$ from the above conditional equations, substituting their values in the minimum equation (5), and then placing the differential coefficients of u with respect to $\xi, \eta, \zeta \ldots$ separately equal to zero. There will thus result as many independent equations as there are unknown quantities of the class in which $\xi, \eta, \zeta \ldots$ fall, the remaining unknown quantities $\Delta x_1, \Delta x_2, \ldots$, or the corrections to the observed values, are then found from the conditional equations.

In many applications it happens that the conditional equations

$$F(\xi, \eta, \zeta, \ldots x + \Delta x) = 0,$$

are not of the linear form. But they may be rendered linear in the following manner. First, eliminate the quantities $x + \Delta x$ from the conditional equations. The result of this elimination may be written

 $f(\xi,\eta,\zeta\ldots)-x-\Delta x=\mathbf{0}.$

Secondly, put

$$\begin{split} \xi &= \xi_0 + \Delta \xi, \\ \eta &= \eta_0 + \Delta \eta, \\ \vdots & \vdots & \vdots \end{split}$$

where ξ_0, η_0, \ldots are approximate values of ξ, η, \ldots , found in any manner, and $\Delta \xi, \Delta \eta, \ldots$ are corrections thereto. Then supposing the approximate values

 ξ_0, η_0, \ldots so close that we may neglect the squares, products, and higher powers of $\Delta \xi, \Delta \eta, \ldots$, Taylor's series gives

$$f(\xi_0, \eta_0, \zeta_0, \ldots) + \frac{\partial f}{\partial \xi} \Delta \xi + \frac{\partial f}{\partial \eta} \Delta \eta + \frac{\partial f}{\partial \zeta} \Delta \zeta + \ldots - x - \Delta x = 0,$$

which is linear with respect to the corrections $\Delta \xi$, $\Delta \eta$, For brevity, and for the sake of conformity with notation generally used, put

$$n = x - f(\xi_0, \eta_0, \zeta_0 \dots),$$

$$v = \Delta x,$$

$$a = \frac{\partial f}{\partial \xi}, \quad b = \frac{\partial f}{\partial \eta}, \quad c = \frac{\partial f}{\partial \zeta}, \dots$$

$$x = \Delta \xi, \quad y = \Delta \eta, \quad z = \Delta \zeta, \dots$$

Then the conditional equations will assume the form

$$ax + by + cz + \ldots - n = v;$$

and if they are m in number they may be written individually thus : —

$$a_{1}x + b_{1}y + c_{1}z' + \dots - n_{1} = v_{1},$$

$$a_{2} + b_{2} + c_{2} + \dots - n_{2} = v_{2},$$

$$\dots$$

$$a_{m} + b_{m} + c_{m} + \dots - n_{m} = v_{m}.$$
(a)

The minimum equation (5) becomes

$$u = [pv^2] = [p(ax + by + cz + ... - n)^2];$$

so that placing $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, ... separately equal to zero will give as many independent equations as there are values of x, y, z, \ldots . The resulting equations are in the usual (Gaussian) notation of least squares :—

$$[paa]x + [pab]y + [pac]z + \dots - [pan] = 0, [pab] + [pbb] + [pbc] + \dots - [pbn] = 0, [pac] + [pbc] + [pcc] + \dots - [pcn] = 0,$$
 (b)

The equations (a) are sometimes called observation-equations. The absolute term *n* is called the observed quantity. It is always equal to the observed quantity *minus* the computed quantity $f(\xi_0, \eta_0, \zeta \dots)$, which latter is assumed to be free from errors of observation. The term *v* is called the residual. It is sometimes, though quite erroneously, replaced by zero in the equations (a).

The equations (b) are called normal equations. They are usually formed directly from equations (a) by the following process: Multiply each equation by the coefficient of x and by the weight p of the v in the same equation, and add the products. The result is the first equation of (b), or the normal equation in x. The normal equations in y, z, \ldots are found in a similar manner.

A noteworthy peculiarity of the normal equations is their symmetry. Hence in forming equations (b) from (a) it is not essential to compute all the coefficients of x, y, z, \ldots except in the first equation.

Checks on the computed values of the numerical terms in the normal equations are found thus: Add the coefficients a, b, c, \ldots of x, y, z, \ldots in (a) and put

$$a_1 + b_1 + c_1 + \ldots = s_1,$$

 $a_2 + b_2 + c_2 + \ldots = s_2,$

Multiply each of these, first, by its pa; secondly, by its pb, etc., and then add the products. The results are

$$[paa] + [pab] + [pac] + \dots = [pas]$$

 $[pab] + [pbb] + [pbc] + \dots = [pbs]$
 \dots

These will check the coefficients of x, y, z, ... in (b). To check the absolute terms, multiply each of the above sums by its np, and add the products. The result is

 $[pan] + [pbn] + [pcn] + \dots = [psn],$

which must be satisfied if the absolute terms are correct.

Checks on the computation of x, y, z, \ldots from (b) and of v_1, v_2, \ldots from (a) are furnished by

 $[pav] = 0, \quad [pbv] = 0, \quad [pcv] = 0, \quad \dots$

To get the unknowns x, y, z, and their weights simultaneously, the best method of procedure is, in general, the following: For brevity replace the absolute terms in (b) by A, B, C, \ldots respectively. Then the solution of (b) will be expressed by

$$x = a_1 \mathcal{A} + \beta_1 \mathcal{B} + \gamma_1 \mathcal{C} + \dots,$$

$$y = a_2 + \beta_2 + \gamma_2 + \dots,$$

$$z = a_3 + \beta_3 + \gamma_3 + \dots,$$

$$\dots,$$

(c)

in which α_1 , β_1 , γ_1 , ... are numerical quantities; and

weight of
$$x = \frac{\mathbf{I}}{\alpha_1}$$
,
weight of $y = \frac{\mathbf{I}}{\beta_2}$, (d)
weight of $z = \frac{\mathbf{I}}{\gamma_3}$,

To compute mean (and hence probable) errors the following formulas apply :---

- m = the number of observed quantities n
 - = number of equations of condition,
- $\mu =$ number of the quantities x, y, z, ...
- ϵ_m = mean error of an observed quantity (n) of weight unity,
- $\epsilon_p = \text{corresponding probable error} = 0.6745 \epsilon_m$

xcii

$$\epsilon_m = \sqrt{\frac{[\not vvv]}{m-\mu}}$$
 for unequal weights,
= $\sqrt{\frac{[vv]}{m-\mu}}$ for equal weights,

Mean error of any observed quantity (n) of weight $p = \frac{\epsilon_m}{\sqrt{p}}$

Mean error of $x = \epsilon_m \sqrt{\alpha_1}$, Mean error of $y = \epsilon_m \sqrt{\beta_2}$, Mean error of $z = \epsilon_m \sqrt{\gamma_3}$, ...,

where $a_1, \beta_2, \gamma_3, \ldots$ are defined by equations (c) and (d) above.

present themselves is (4) with ξ , η , ζ , . . . suppressed, or

e. Case of functions of several observed quantities x, y, z,

This case is that in which the conditional equations (4) contain no disposable quantities ξ , η , ζ , It is the opposite extreme to that represented by the case of the preceding section.* It finds its most important and extensive application in the adjustment of triangulation, wherein the observed quantities are the angles and bases of the triangulation, and the conditions (4) arise from the geometrical relations which the observed quantities *plus* their respective corrections must satisfy.

An outline of the general method of procedure in this case is the following : — The first step consists in stating the conditional equations and in reducing them to the linear form if they are not originally so. The form in which they

$$F(x_1 + \Delta x_1, x_2 + \Delta x_2, x_2 + \Delta x_3, \dots) = 0.$$

wherein x, y, z, \ldots of (4) are replaced by $x_1, x_2, x_3 \ldots$ for the purpose of simplicity in the sequel. If this equation is not linear, Taylor's series gives

$$F(x_1, x_2, x_3...) + \frac{\partial F}{\partial x_1} \Delta x_1 + \frac{\partial F}{\partial x_2} \Delta x_2 = ... = 0,$$

since the method supposes that the squares, products, etc., of $\Delta x_1, \Delta x_2 \dots$ may be neglected. The last equation is then linear with respect to the corrections $\Delta x_1, \Delta x_2 \dots$ which it is desired to find.

For brevity put

and the

 $F(x_1, x_2, x_3 \dots) = q_1$, a known quantity,

$$\frac{\partial F}{\partial x_1} = a_1, \qquad \frac{\partial F}{\partial x_2} = a_2, \qquad \frac{\partial F}{\partial x_3} = a_3, \ldots$$

Then the conditional equations will be of the type

$$a_1\Delta x_1 + a_2\Delta x_2 + a_3\Delta x_3 + \ldots + q_1 = 0.$$

* The middle ground between these extremes has been little explored; indeed, most practical applications fall at one or the other of the extremes.

There will be as many equations of this type as there are independent relations which the quantities $x_1 + \Delta x_1$, $x_2 + \Delta x_2$, ... must satisfy. Suppose there are k such relations, and let the differential coefficients $\partial F/\partial x_1$, $\partial F/\partial x_2$, ... for the second relation be denoted by b_1 , b_2 , b_3 , ...; for the third relation by c_1 , c_2 , c_3 , ..., etc. Then all of the conditional equations may be written thus:

$$a_{1}\Delta x_{1} + a_{2}\Delta x_{2} + a_{3}\Delta x_{3} + \ldots + q_{1} = 0,$$

$$b_{1} + b_{2} + b_{3} + \ldots + q_{2} = 0,$$

$$c_{1} + c_{2} + c_{3} + \ldots + q_{3} = 0,$$

$$\ldots,$$

(a)

the number of these equations being k.

Call the weights of the observed quantities $x_1, x_2, \ldots p_1, p_2, \ldots$. Then, subject to the conditions (a) we must have (in accordance with (5))

$$u = p_1(\Delta x_1)^2 + p_2(\Delta x_2)^2 + \ldots = [p(\Delta x)^2]$$
 (b)

a minimum.

Equations (a) and (b) contain the solution of all problems falling under the present case. Obviously, the number of conditions (a) must be less than the number of observed quantities x, or less than the number of Δx 's in (b); in other words, if m denote the number of observed quantities, m > k, for if $m \ge k$ the minimum equation (b) has no meaning.

The question presented by (a) and (b) is one of elimination only. Two methods, the one direct and the other indirect, are available. Thus, by the direct method one finds from (a) as many Δx 's as there are equations (a), or k such values, and substitutes them in (b). The remaining (m - k) values of Δx in (b) may then be treated as independent and the differential coefficients of u with respect to each of them placed equal to zero. Thus all of the corrections Δx become known.

By the indirect process, one multiplies the first of equations (a) by a factor Q_1 , the second by Q_2 , the third by Q_3 , ... and subtracts the differential (with respect to the Δx 's) of the sum of these products from half the differential of (b). The result of these operations is

$$\frac{1}{2} du = \{ p_1 \Delta x_1 - (a_1 Q_1 + b_1 Q_2 + c_1 Q_3 + \ldots) \} d\Delta x_1 + \{ p_2 \Delta x_2 - (a_2 Q_1 + b_2 Q_2 + c_2 Q_3 + \ldots) \} d\Delta x_2 + \cdots + \{ p_m \Delta x_m - (a_m Q_1 + b_m Q_2 + c_m Q_3 + \cdots) \} d\Delta x_m$$

Now we may choose the factors Q_1, Q_2, \ldots, Q_k in such a way as to make k of the coefficients of the differentials in this equation disappear; and after thus eliminating k of these differentials we are at liberty to place the coefficients of the remaining (m - k) differentials equal to zero. Thus all conditions are satisfied by making

$$a_{1}Q_{1} + b_{1}Q_{2} + c_{1}Q_{3} + \ldots - p_{1}\Delta x_{1} = 0,$$

$$a_{2} + b_{2} + c_{2} + \ldots - p_{2}\Delta x_{2} = 0,$$

$$\ldots$$

$$a_{m} + b_{m} + c_{m} + \ldots - p_{m}\Delta x_{m} = 0;$$
(c)

and the values of the corrections will be given by these equations when the factors Q_1, Q_2, \ldots are known. To find the latter it suffices to substitute the values

of $\Delta x, \Delta x_{2}, \ldots$ from (c) in (a), whereby there will result k equations containing the Q_1, Q_2, \ldots, Q_k alone as unknowns. The result of this substitution is

$$\begin{bmatrix} \frac{aa}{p} \\ \frac{ab}{p} \end{bmatrix} Q_1 + \begin{bmatrix} \frac{ab}{p} \\ \frac{ab}{p} \end{bmatrix} Q_2 + \begin{bmatrix} \frac{ac}{p} \\ \frac{bc}{p} \end{bmatrix} Q_3 + \dots + q_1 = 0,$$

$$\begin{bmatrix} \frac{ab}{p} \\ \frac{ac}{p} \end{bmatrix} + \begin{bmatrix} \frac{bb}{p} \\ \frac{bc}{p} \end{bmatrix} + \begin{bmatrix} \frac{bc}{p} \\ \frac{bc}{p} \end{bmatrix} + \dots + q_2 = 0,$$

$$(d)$$

$$\begin{bmatrix} \frac{ac}{p} \\ \frac{ac}{p} \end{bmatrix} + \begin{bmatrix} \frac{bc}{p} \\ \frac{bc}{p} \end{bmatrix} + \begin{bmatrix} \frac{cc}{p} \\ \frac{bc}{p} \end{bmatrix} + \dots + q_3 = 0,$$

These equations (d) are derived directly from (c) in the following manner: multiply the first of (c) by $\frac{a_1}{p_1}$, the second by $\frac{a_2}{p_2}$, etc., sum the products, and compare the sum with the first of (a). The first of (d) is then evident; the others are obtained in a similar way.

The mean error of an observed quantity of weight unity is in this case given by the formula

$$\epsilon_m = \sqrt{\frac{\left[p(\Delta x)^2\right]}{k}},$$

where k is the number of conditions (a); and the mean error of any observed value of weight p is

f. Computation of mean and probable errors of functions of observed quantities.

Let V denote any function of one or more independently observed quantities x, y, z, \ldots ; that is, let

 $V = f(x, y, z \ldots).$

A question of frequent occurrence with respect to such functions is, What is the mean * error of V in terms of the mean errors of x, y, z, \ldots ? The answer to this question given by the method of least squares assumes that the actual errors (whatever they may be) of x, y, z, \ldots are so small that the actual error of V is a linear function of the errors of x, y, z. In other words, if e_x, e_y, e_z, \ldots denote the actual errors of x, y, z, \ldots , and ΔV denote the corresponding actual error of V, the method assumes that

$$\Delta V = \frac{\partial V}{\partial x} e_x + \frac{\partial V}{\partial y} e_y + \frac{\partial V}{\partial z} e_z + \dots, \qquad (a)$$

wherein the squares, products, etc., of e_x , e_y , e_z , ... are omitted.

This condition being fulfilled, let ϵ denote the mean error of V, and ϵ_x , ϵ_y , ϵ_z ... denote those of x, y, z, ... respectively. Then the law of error of least squares requires that

$$\epsilon^{2} = \left(\frac{\partial V}{\partial x}\right)^{2} \epsilon_{x}^{2} + \left(\frac{\partial V}{\partial y}\right)^{2} \epsilon_{y}^{2} + \left(\frac{\partial V}{\partial z}\right)^{2} \epsilon_{z}^{2} + \dots \qquad (b)$$

* Since the probable error is 0.6745 times the mean error the latter only need be considered.

$$\frac{\epsilon_m}{\sqrt{p}}$$

This equation includes all cases. Its analogy with (a) should be noted, since the step from (a) to (b) is clear when the correct form of (a) is known. Mistakes in the application of (b) are most likely to arise from a lack of knowledge of the *independently observed* quantities x, y, z, \ldots or from a lack of knowledge of the true form of (a). Hence,* in deriving probable errors of functions of observed quantities attention should be given first to the construction of the expression for the actual error (a).

A few examples may serve to illustrate the use of (a) and (b).

(1.) Suppose

 $V = f(x, y, z, \ldots) = a (x - y) + b (y + z) + c (z - 1).$ $\frac{\partial V}{\partial x} = a, \qquad \frac{\partial V}{\partial y} = b - a, \qquad \frac{\partial V}{\partial z} = b + c,$ $\Delta V = ae_x + (b - a)e_y + (b + c)e_x,$ $\epsilon^2 = a^2\epsilon_x^2 + (b - a)^2\epsilon_y^2 + (b + c)^2\epsilon_z^2.$

(2.) Suppose

$$V = f(x, y, z \dots) = \frac{a}{x} + b \frac{y}{z^2}.$$

Then

Then

$$\frac{\partial V}{\partial x} = -\frac{a}{x^2}, \qquad \frac{\partial V}{\partial y} = \frac{b}{z^2}, \qquad \frac{\partial V}{\partial z} = -\frac{2}{z^8},$$
$$\Delta V = -\frac{a}{x^2}e_x + \frac{b}{z^2}e_y - \frac{2}{z^8}b_{zx},$$
$$\epsilon^2 = \frac{a^2}{x^4}\epsilon_x^2 + \frac{b^2}{z^4}\epsilon_y^2 + \frac{4}{z^6}b^2y^2\epsilon_x^2.$$

(3.) Suppose

$$V = a \log x + b \sin y + c \log \tan z$$

Then

$$\frac{\partial V}{\partial x} = \frac{a\mu}{x}^{\dagger}, \quad \frac{\partial V}{\partial y} = b \cos y, \quad \frac{\partial V}{\partial z} = \frac{c\mu}{\sin z \cos z}$$

and

$$\epsilon^2 = \left(\frac{d\mu}{x}\right)^2 \epsilon_x^2 + (b \cos y)^2 \epsilon_y^2 + \left(\frac{2 c\mu}{\sin (2 z)}\right)^2 \epsilon_z^2.$$

(4.) Suppose the case of a single triangle all of whose angles are observed. What is the mean error, 1st, of an observed angle; 2d, of the correction to an observed angle; and 3d, of the corrected or adjusted angle?

Let x, y, z denote the observed angles, p, q, r their weights, and Δx , Δy , Δz the corresponding corrections.

Then, as shown on p. lxxxvii,

 $\Delta x + \Delta y + \Delta z = c = 180^{\circ} + \text{sph. excess} - (x + y + z)$ = error of closure of triangle,

$$Q = \frac{1}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}},$$
$$\Delta x = \frac{Q}{p}, \qquad \Delta y = \frac{Q}{q}, \qquad \Delta z = \frac{Q}{r}.$$

* As remarked by Sir George Airy in his *Theory of Errors.* $\dagger \mu =$ modulus of common logarithms. For brevity, put

$$g = 180^{\circ} + \text{spherical excess}, \qquad h = \frac{1}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}},$$
$$Q = h (g - x - y - z) = hc,$$

Then

$$Q = h (g - x - y - z) = hc,$$

$$\Delta x = \frac{h}{p} (g - x - y - z),$$

$$x + \Delta x = \frac{h}{p} (g - x - y - z) + x,$$

with similar expressions for the other two angles.

Now by the formula on p. xcv the square of the mean error of an observed angle of weight unity is (since there is but one condition to which Δx , Δy , Δz are subject),

$$p(\Delta x)^2 + q(\Delta y)^2 + r(\Delta z)^2 = \frac{Q^2}{h} = hc^2.$$

Hence, the squares of the mean errors of the *observed* angles x, y, z, their weights being p, q, r respectively, are

$$\frac{hc^2}{p}, \qquad \frac{hc^2}{q}, \qquad \frac{hc^2}{r},$$

respectively.

To get the mean error of a correction, Δx for example, formula (a) gives

 $\Delta V = \Delta(\Delta x) = -\frac{h}{p}(e_x + e_y + e_z),$

and the corresponding expressions for the actual errors of Δy and Δz are found from this by replacing p by q and r respectively. Thus by (b), observing that the mean errors of x, y, z are given above, there result

Square of mean error of
$$\Delta x = (hc/p)^2$$
,
" " " $\Delta y = (hc/q)^2$,
" " $\Delta z = (hc/r)^2$.

Likewise, the formula for the actual error of $x + \Delta x$ is

$$\Delta V = \Delta(x + \Delta x) = \left(1 - \frac{h}{p}\right)e_x - \frac{h}{p}e_y - \frac{h}{p}e_x,$$

and the corresponding expressions for the actual errors of $y + \Delta y$ and $z + \Delta z$ are found by interchange of q and r with p. Thus the squares of the mean errors of the *adjusted* angles are : —

for $(x + \Delta x)$, $\frac{hc^2}{p} \left(\mathbf{I} - \frac{h}{p} \right)$, for $(y + \Delta y)$, $\frac{hc^2}{q} \left(\mathbf{I} - \frac{h}{q} \right)$, for $(z + \Delta z)$, $\frac{hc^2}{r} \left(\mathbf{I} - \frac{h}{r} \right)$. In case the weights are equal, or in case p = q = r, $h = \frac{1}{3}$, and there result, —

Square of mean error of observed angle $= \frac{1}{3}c^{2}$, """"""correction to observed angle $= \frac{1}{3}c^{2}$, """"""adjusted angle $= \frac{2}{3}c^{2}$,

where c is the error of closure of the triangle; so that in this case of equal weights the three mean errors are to one another as $\frac{1}{3}\sqrt{3}$, $\frac{1}{3}$, and $\frac{1}{3}\sqrt{2}$.

References.

The literature of the theory of errors, especially as exemplified by the method of least squares, is very extensive. Amongst the best treatises the following are worthy of special mention : Method of Least Squares, Appendix to vol. ii. of Chauvenet's "Spherical and Practical Astronomy." Philadelphia : J. B. Lippincott & Co., 8vo, 5th ed., 1887. "A Treatise on the Adjustment of Observations, with Applications to Geodetic Work and Other Measures of Precision," by T. W. Wright. New York : D. Van Nostrand, 8vo, 1884. "On the Algebraical and Numerical Theory of Errors of Observation and on the Combination of Observations," by Sir George Biddle Airy. London : Macmillan & Co., 12mo, 2d ed., 1875. "Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente," von F. R. Helmert. Leipzig : B. G. Teubner, 8vo, 1872.

EXPLANATION OF SOURCE AND USE OF THE TABLES.

TABLES 1 and 2 are copies of tables issued by the Office of Standard Weights and Measures of the United States, edition of November, 1891.

Table 3 is derived from standard tables giving such data. The arrangement is that given in "Des Ingenieurs Taschenbuch, herausgegeben von dem Verein 'Hütte'"* (11th edition, 1877). The numbers have been compared with those given in the latter work, and also with those in Barlow's "Tables." The logarithms have been checked by comparison with Vega's 7-place tables.

Table 4 is abridged from a similar table in the Taschenbuch just referred to.

Tables 5 and 6 are copies of standard forms for such table. They have been checked by comparison with standard higher-place tables. The mode of using these tables will be evident from the following examples: —

(1.) To find the logarithm of any number, as 0.06944, we look in Table 5 in the column headed N for the first two significant figures of the number, which are in this case 69. In the same horizontal line with 69 we now look for the number in the column headed with the next figure of the given number, which is in the present case 4. We thus find .8414 for the mantissa of the logarithm of the number 694. To get the increase due to the additional figure 4, we look in the same horizontal line under Prop. Parts in the column headed 4 and find the number 2, which is the amount in units of the fourth place to be added to the part of the mantissa previously found. Thus the mantissa of log (0.06944) is .8416. The characteristic for the logarithm in question is -2 = 8-10. Hence log (0.06944) = 8.8416-10.

(2.) To find the number corresponding to any logarithm, as 8.8416-10, we look in **Table 6** in the column headed L for the first two figures of the mantissa, which are in this case 84. In the same horizontal line with 84 we now look for the number in the column headed by the next figure of the mantissa, which is in this case 1. We thus find 6394 for the number corresponding to the mantissa 8410. To get the increase due to the additional figure 6, we look in the same horizontal line under Prop. Parts in the column headed 6 and find 10, which is the amount in units of the fourth place to be added to the number previously found. Thus the significant figures of the number are 6944, and since the characteristic of the logarithm is 8-10 = -2, the required number is 0.06944.

* Berlin: Verlag von Ernst & Korn. This work is an invaluable one to the engineer, architect, geographer, etc. Tables 7 and 8 are taken from "Smithsonian Meteorological Tables" (the first volume of this series). Their mode of use will be apparent from the following example: Required the sine and tangent for 28° 17'.

Table 9 is a copy of a similar table published in "Professional Papers, Corps Engineers," U. S. A., No. 12. It has been checked by comparison with other tables in general use. This table is useful in computing latitudes and departures in traverse surveys wherein the bearings of the lines are observed to the nearest quarter of a degree, and in other work where multiples of sines and cosines are required. Thus, if L denote the length and B the bearing from the meridian of any line, the latitude and departure of the line are given by

$L\cos B$ and $L\sin B$

respectively; the "latitude" being the distance approximately between the parallels of latitude at the ends of the line, and the "departure" being the distance approximately between the meridians at the ends of the line. As an example, let it be required to compute the latitude and departure for L = 4837, in any unit, and $B = 36^{\circ}$ 15'. The computation runs thus :---

									Latitude.	Departure.
For 4000	•		•	•		•	•	•	3225.77	2365.23
800	•	•	•	•		•	•	•	645.16	473.05
30	•	•	•	•	•	•	•	•	24.19	17.74
7	•	•	•	•	•	•	•	•	5.63	4.14
4837	•	•	•	•		Lc	osi	B =	= 3900.77	$L\sin B = 2860.16$

Tables 10 and 11 give the logarithms of the principal radii of curvature of the earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and carefully checked by differences. They depend on the elements of Clarke's spheroid of 1866. The use of these tables is sufficiently explained on p. xlv-xlix.

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sections inclined to the meridian sections. It is abridged to 5 places from a 6-place table published in the "Report of the U. S. Coast and Geodetic Survey for 1876." Its use is explained on pp. lxi-lxiv.

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal excess of triangles on the earth's spheroid. No. 13 is constructed for the English foot as unit, and No. 14 for the metre. These tables were computed by Mr. Charles H. Kummell. Their use is explained on p. lviii. The following example will illustrate their use : —

L	atitude of	vertex	A o	f triangle	: 48°	o8′	
	"	"	B	"	47	52	
	"	"	С	"	47	ō4	
N	Iean latitu	de			47	41	
Angle	$C = 51^{\circ}$	22' 55'	' log	sin C	9.89	283	- 10
			log	a (feet)	5.64	40 I	
			log	b (feet)	5.58	1 8 d	
log fa	ctor, Tab l	e 13, i	for 4	7°41′	0.37	176	
Spher	oidal exce	ss == 3	1."29	o, log	1.49	541	

Tables 15 and 16 give logarithms of factors for computing differences of latitude, longitude, and azimuth in secondary triangulation whose lines are 12 miles (20 kilometres) or less in length. These tables were computed by Mr. Charles H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16 for the metre as unit. The use of these tables is illustrated by a numerical example given on pp. lx and lxi. For lines not exceeding the length mentioned, the tables will give differences of latitude and longitude to the nearest hundredth of a second of arc, using 5-place logarithms of the lengths of the lines.

Table 17 gives lengths of terrestrial arcs of meridians corresponding to latitude intervals of 10", 20", ... 60", and 10', 20', ... 60', or lengths corresponding to arcs less than 1°. The unit of length is the English foot. The table was computed by Mr. B. C. Washington, Jr.

The length corresponding to any latitude interval is the distance along the meridian between parallels whose latitudes are less and greater respectively than the given latitude by half the interval. Thus, for example, the length corresponding to the interval 30' and latitude 37'' (182047.3 feet) is the distance along the meridian from latitude 36'' 45' to latitude 37'' 15'.

By interpolation, we may get from this table the meridional distance corresponding to any interval. The following example illustrates this use: Required the distance between latitude 41° 28' 17.''8 and latitude 41° 39' 53.''4. The difference of these latitudes is 11' 35.''6, and their mean is 41° 34' 05.''6. The computation runs thus: —

	Latitude 41°.	Tabular difference.
10'	60724.60 feet	10.70 feet
I'	6072.46 "	1.07"
30″	3036.23 "	.54 "
5″	506.04 "	.09"
0."6	60.72 "	.01 "
$\frac{34.09}{60} \times 12.41$	7.05 "	sum, 12.41 "
Dista	nce = 70407.10 "	

When the degree of precision required is as great as that of the example just

given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this example, -

$$\Delta \phi = 695.''6 \qquad 2.8423596 \\ \phi = 41^{\circ} 34' 05.''6, \rho_m \text{ (Table 10)} 7.3196820 \\ \text{cons't} \qquad 4.6855749 \\ \text{Length} = 70407.10 \text{ feet} \qquad 4.8476165 \end{cases}$$

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longitude intervals of 10'', 20'', ... 60'', and 10', 20', ... 60', or lengths corresponding to arcs less than 1° . The unit is the English foot. This table was computed by Mr. B. C. Washington, Jr.

The method of using this table is similar to that applicable to **Table 17** explained above. For the computation of long arcs it will in general be less laborious to use the formulas (1) on p. xlix than to resort to interpolation from **Table 18**.

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in accordance with the polyconic system explained on pp. liii-lvi, for the following scales respectively: ---

 Table 19, scale $\frac{1}{250000}$

 "20, " $\frac{1}{125000}$

 "21, " $\frac{1}{125720}$ (2 miles to 1 inch)

 "22, " $\frac{1}{10000}$ (1 mile to 1 inch)

 "23, " $\frac{1}{200000}$

 unit = millimetre.

These tables were computed by Mr. B. C. Washington, Jr.

The use of these tables and their application in the construction of maps may be best explained by an example. Suppose it is required to draw meridians and parallels for a map of an area of 1° extent in longitude, lying between the parallels of 34° and 35°. Let the scale of the map be one mile to the inch, or 1/63360, and let the meridians and parallels be 10' apart respectively. Draw on the projection paper an indefinite straight line AB, Fig. 4, to represent the middle meridian of the map. Take any convenient point, as C, on this line for the latitude 34°, and lay off from this point the meridional distances CD, CE, CF, ... CI, given in the second column of Table 22, p. 114.* Through the points D, E, F, . . . I, thus found, draw indefinite straight lines perpendicular to AB. By means of these lines and the tabular co-ordinates, points on the developed parallels and meridians are readily found. Thus, for example, the abscissas for points ten minutes apart on the parallel 34° 20' are 9.53, 19.06, and 28.59 inches. These distances are to be laid off on NN' in both directions from AB. At the points L, M, N, L', M', N', so determined, erect perpendiculars to NN' equal in length, respectively, to the ordinates corresponding to the longitude intervals

ł

^{*} The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 are one twentieth of the true or tabular values. The ordinates of points on the developed parallels are the tabular values.

10', 20', 30'. The curved line joining the extremities of these perpendiculars is the parallel required. It may be drawn by means of a flexible ruler. The other parallels are constructed in the same manner. They are all concave towards the north or south according as the map shows a portion of the northern or southern hemisphere. The meridians are drawn in a similar manner through the points (e. g., P, Q, M, R, S, T, U in Fig. 4) having the same longitude relative to the middle meridian. All meridians are concave towards the middle meridian.

A test of the graphical work which should always be applied is the approximation to equality of corresponding diagonals in the various quadrilaterals formed. Thus in Fig. 4, VX should be equal to WY, CN to CN', EV to EW, etc.*

Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, of the earth's surface. They are taken from "Bulletin 50, U. S. Geological Survey." The unit of length used is the English mile, and the areas are thus given in square miles. The method of using these tables is obvious.

Table 30 gives data for the computation of heights, from barometric measures, in accordance with the formula of Babinet.[†] This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The manner of using it is explained in connection with the table.

* It should be noted that CN is not equal to EV, N and V referring here to points on the developed parallels.

[†] Comptes Rendus, Paris, 1850, vol. xxv. p. 309.

Table 31 gives the mean astronomical refraction in terms of the apparent altitude of a star or other object outside the earth's atmosphere. It is taken from Vega's 7-place table of logarithms. Its use will be evident from the following example : —

Apparent altitude of star =
$$34^{\circ}$$
 17' 12."7
Refraction = 1' 24." $3 + \frac{3}{20} \times 1$."1 = 1 24.5
True altitude of star = 34 15 48.2

Tables 32 and 33 facilitate the interconversion of arc and time. They are taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The following examples illustrate their use: —

(1.) To convert 68° 29' 48."8 into time we have from Table 32 -

68°	$= 4^{1}$	` 32 ^m	008
29'	=	I	56
48″	==		3.20
o."	8 ==		.05
Equivalent in tim	e = 4	33	59.25

(2.) To convert 5^h 43^m 28.^s8 into arc we have from Table 33 -

5 ^h	==	75°	00'	00″
43 ^m	=	10	45	00
28 ^s	==		7	00
o.*8	=			12
Equivalent in arc	=	85	52	12

Tables 34 and 35 facilitate the interconversion of mean solar and sidereal time intervals. They are taken from Vega's 7-place table of logarithms. The mode of using them is explained in the tables themselves.

Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians and parallels expressed in metres,* statute miles (English), and geographic miles (distance corresponding to 1 on the earth's equator). These tables are taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 38 facilitates the interconversion of statute (English) miles and nautical miles. The nautical mile used is that defined by the U. S. Coast and Geodetic Survey, namely: the length of a minute of arc of a great circle of the sphere whose surface equals that of the earth (Clarke's spheroid of 1866). For formula for radius of such sphere see p. lii. This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 39 gives the English and metric equivalents of other standards of length still in use or obsolescent. It is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 40 gives values of the acceleration (g) of gravity, $\log g$, $\log (1/2g)$, $\log \sqrt{2g}$,

1

١

^{*} It should be observed that the metric values given in these tables depend on Clarke's value of the ratio of the yard to the metre, which is now known to be erroneous by about the 1/100000th part.

and (g/π^2) or the length of a seconds pendulum, for intervals of 5° of geographical latitude. It was computed by the editor, and is based on the formula for g given by Professor William Harkness in his memoir "On the Solar Parallax and its Related Constants."*

Table 41 gives the linear expansions of the principal metals. It was compiled by the editor from various sources. The values given for the expansion per degree Centigrade have been rounded (with one exception) to the nearest unit in the millionths place, or to the nearest micron, since different specimens of the same metal vary more or less in the ten-millionths place.

Table 42 gives the fractional changes in numbers corresponding to changes in the 4th, 5th,...7th place of their logarithms. These fractions are often convenient in showing the approximate error in a number due to a given error in its logarithm, or the converse. Thus, for example, referring to the remark in a foot-note under explanation of **Tables 36 and 37** above, the error in the logarithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place of decimals; the **Table 42** shows, then, that the metric equivalents in **Tables 36 and 37** are erroneous by about 1/100 000th part.

* Washington, Government Printing Office, 1891.

. .

GEOGRAPHICAL TABLES

TABLE 1. FOR CONVERTING U. S. WEICHTS AND MEASURES.* CUSTOMARY TO METRIC.

		LINEAR	٤.				CAPACI	IY.	
	Inches to milli- metres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millilitres or cubic centi- metres.	Fluid ounces to milli- litres.	Quarts to litres.	Gallons to litres.
I 3 3 1 3 1 1	25 ⁻ 4001 50 ⁻ 8001 76 ⁻ 2002 101 ⁻ 6002 127 ⁻ 0003 152 ⁻ 4003 152 ⁻ 4003 177 ⁻ 8004 203 ⁻ 2004 228 ⁻ 6005	0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405	5.486411	9 ^{.6} 5608 11.26543 12.87478	I 2 3 5 6 7 8 9	3'70 7'39 11'09 14'79 18'48 22'18 25'88 25'88 29'57 33'27	29'57 59'15 88'72 118'29 147'87 177'44 207'02 236'59 266'16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	378543 757087 1135630 1514174 1892717 2271261 2649804 3028348 3406891
SQUARE.							WEIGH	т.	
	Square inches to square centi- metres.	Square feet to square deci- metres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces tc grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
I	6:452 12:903 19:355 25:807 32:258 38:710 45:161 51:613 58:065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.344 4.181 5.017 5.853 6.689 7.525	0'4047 0'8094 1'2141 1'6187 2'0234 2'4281 2'8328 3'2375 3'6422	I	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3914 583.1903	170°0972 198°4467 226°7962	1.81437 2.26796 2.72156 3.17515	31'10348 62'20696 93'31044 124'41392 155'51740 186'62088 217'72437 248'82785 279'931'33
		CUBIC.			-				
	Cubic inches to cubic centi- metres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.					
I 2 3 4 5 4 5 7 9 9 9 10 10 10 10 10 10 10 10 10	16·387 32·774 49·161 65·549 81·936 98·323 114·710 131·097 147·484	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0'35239 0'70479 1'05718 1'40957 1'76196 2'11436 2'46675 2'81914 3'17154	IS If In If In	unter's c. q. statute tthom autical mi oot == 0.3 voir. pour 35639 gra	mile == ile == 04801 men nd ==	² 59'000 1.829 1853'25 tre, 9'48 453'5924	

The ouly authorized material standard of customary length is the Troughton scale belonging to this office, whose length at $50^{\circ}.62$ Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard. The ouly authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy. The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois. The British gallon = 4.54346 litres. The British bushel = 36.3477 litres. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

Spheroid of 1866).

* Issued by U. S. Office of Standard Weights and Measures, and republished here by permission of Superintendent of Coast and Geodetic Survey.

TABLE 2. FOR CONVERTING U. S. WEIGHTS AND MEASURES. METRIC TO CUSTOMARY.

		LINEA	R.				С	APACI	TY.		
	Metres to inches.	Metres to feet.	Metres to yards.	Kilo- metres to miles.		Millilitres or cubic centi- metres to fluid drams.	Cent litres fluic ounce	to Litr qua	es to urts.	Deca litres t gallons	o litres to
1	39 3700 78 7400 118 1100 196 8500 236 2200 275 5900 314 9600 354 3300	9 ^{.8} 4250 13 ^{.12} 333 16 [.] 40417 19 ^{.68} 500 22 [.] 96583 26 ^{.24667}	2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.34959 4.97096 5.59233	I == 2 == 3 == 5 == 7 == 9	0*27 0*54 0*81 1*08 1*35 1*62 1*89 2*16 2*43	0.33 0.67 1.01 1.35 2.02 2.36 2.70 3.04	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2567 134 2700 2267 2834 3401 3968 535 101	2'641 5'283 7'923 10'566 13'208 15'850 18'491 21'133 23'775	5.6755 8.5132 8.11.3510 35 14.1887 92 17.0265 19.8642 36 22.7019
SQUARE.							,	WEIGH	(T .		
	Square centi- metres to square inches-	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes grains.	to gran	Kilo- nmes to rains,	avoi	imes	Kilo- grammes to pounds avoirdu- pois.
1	0'1550 0'3100 0'4650 0'7750 0.9300 1'0850 1'2400 1'3950	10.764 21.528 32.292 43.055 53.819 64.583 75.347 86.111 96.875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2:471 4:942 7:413 9:884 12:355 14:826 17:297 19:768 22:239	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ \end{array} $	0*01543 0*03086 0*06173 0*07716 0*09250 0*10805 0*12346 0*13885	5 30 3 6 3 6 3 6 3 6 3 6 3 6 10 3 10 3 10 5 12	5432.36 5864.71 5297.07 1729.43 7161.78 2594.14 5026.49 3458.85 5891.21	7.0 10.1 14.1 17.6 21.1 24.6 28.2	274 5548 5822 1096 5370 1644 5918 2192 7466	2'20462 4'40924 6'61387 8'81849 11'02311 '13'22773 15'43236 17'63698 19'84160
		CUBIC	c.			WI	EIGHT	- (a	ontin	ued).	
	Cubic centi- metres to cubic inches.	Cubic deci- metres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.		Quintal pounds		Millie tonne pound	es to		ilogrammes to ounces Troy.
$ \begin{array}{c} I = \\ 2 = \\ 3 = \\ 4 = \\ 5 = \\ 7 = \\ 8 = \\ 9 = \\ 9 \end{array} $	0.0610 0.1220 0.1831 0.3051 0.3051 0.3051 0.4272 0.4882 0.5492	61.023 122.047 183.070 244.094 305.117 366.140 427.164 488.187 549.210	35'314 70'629 105'943 141'258 176'572 211'887 247'201 282'516 317'830	1'308 2'616 3'924 5'232 6'540 7'848 9'156 10'464 11'771	$ \begin{array}{c} 1 = \\ 2 = \\ 3 = \\ 4 = \\ 5 = \\ 7 = \\ 9 = \\ \end{array} $	220'. 440' 661' 881' 1102' 1543' 1543' 1763' 1984'	92 39 85 31 77 24 70	220 440 661 881 1102 1322 1543 1763 1984	9°2 3°9 3°5 3°1 2°4 7°7		32:1507 64:3015 96:4522 128:6030 160:7537 192:9044 225:0552 257:2059 289:3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-indium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a cer-tain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype stand-ards. The others were distributed by lot, in September, 1889, to the different governments and are called National prototype standards. Those apportioned to the United States were received in 1890 and are in the keeping of this office. The metric system was legalized in the United States in 1866. The International Standard Metre is derived from the Metre des Archives, and its length is defined by the dis-tance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights

and Measures.

aug measures. The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives. The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

	1	<u> </u>	1		1	1
n	1000. ¹ /n	n ²	n ⁸	√n	§n.	log. n
1	1000.000	I	I	1.0000	1.0000	0.00000
2	500.000	4	8	1.4142	1.2599	0.30103
3	333-333	, ,	27	1.7321	I.4422	0.47712
4	250.000	9 16	64	2.0000	1.5874	0.60206
5	200.000	25	125	2.2361	1.7100	0.69897
6	1,66.667	25 36	210	2.4495	1.8171	0.77815 0.84510
78	142.857	49	343	2.6458	1.9129	
	125.000	64	512	2.8284	2.0000	0.90309
9	111.111	81	729	3.0000	2.0801	0.95424
10	100.000	100	1000	3.1623	2.1 544	1.00000
II	90.9091	121	1331	3.3166	2.2240	1.04139
12	83.3333	144	1728	3.4641	2.2894	1.07918
13 14	76.9231 71.4286	169	2197	3.6056	2.3513	1.11394
	/1.4200	196	2744	3.7417	2.4101	1.14613
15 16	66.6667	225 256	3375	3.8730	2.4662	1.17609
	62.5000 58.8235	250 289	4096 4913	4.0000	2.5198	I.20412
17 18	55.5556	324	5832	4.1231 4.2426	2.5713 2.6207	1.23045
19	52.6316	361	5859	4.3589	2.6684	1.25527 1.27875
20	50.0000	400	8000	4.4721	2 71 44	1.30103
21	47.6190	441	9261	4.4/21 4.5826	2.7144 2.7589	1.32222
22	45.4545	484	10648	4.6904	2.8020	1.34242
23	43.4783	529	12167	4.7958	2.8439	1.36173
24	41.6667	576	13824	4.8990	2.8845	1.38021
25	40 .0 000	625	1 562 5	5.0000	2.9240	1.39794
26	38.4615	676	I7576	5.0990	2.9625	1.41497
27 28	37.0370	729	19683	5.1962	3.0000	1.43136
	35.7143	784	21952	5.2915	3.0366	1.44716
29	34.4828	841	24389	5.3852	3.0723	1.46240
30	33-3333	900	27000	5.4772	3.1072	1.47712
31	32.2581	961	29791	5.5678	3.1414	1.49136
32 33	31.2500	1024 1089	32768	5.6569	3.1748	1.50515
33 34	30.3030 29.4118	1156	35937 39304	5.7446 5.8310	3.2075	1.51851 1.53148
_		-			. 3.2396	1.53140
35 26	28.5714	1225	42875 46656	5.9161	3.2711	1.54407
36 27	27.7778 27.0270	1296 1369	40050 50653	6.0000 6.0828	3.3019	1.55630 1.56820
37 38	26.3158	1309	54872	6.1644	3.3322 3.3620	1.50820
39	25.6410	1 5 2 1	59319	6.2450	3.3912	1.59106
40	25.0000	1600	64000	6.3246	3.4200	1.60206
41	24.3902	1681	68921	6.4031	3.4482	1.61278
42	23.8095	1764	74088	6.4807	3.4760	1.62325
43	23.2558	1849	79507 85184	6.5574	3.5034	1.63347
44	22.7273	1936	85184	6.6332	3.5303	1.64345
45	22.2222	2025	91125	6.7082	3.5569	1.65321
46	21.7391	2116	97336	6.7823	3.5830	1.66276
47 48	21.2766 20.8333	2209	103823	6.8557	3.6088	1.67210
40 49	20.0333	2304 2401	110592 117649	6.9282 7.0000	3.6342 3.6593	1.68124 1.69020
50	00.0000			·		
50 51	20.0000 19.6078	2500 2601	125000 132651	7.0711	3.6840	1.69897
52	19.2308	2704	140608	7.1414 7.2111	3.7084	1.707 57
53	18.8679	2809	148877	7.2801	3.7325 3.7563	1.71600 1.72428
54	18.5185	2916	1 57464	7.3485	3.7798	1.73239
					0.17-	
	-					

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

							-
11	1000. <u>1</u>	n ²	728	V72	⁸ / <i>ท</i>	log. <i>n</i>	
55	18.1818	3025	166375	7.4162	3.8030	1.74036	
56	17.8571	3136	175616	7.4833	3.8259	1.74819	1
57 58	17.5439 17.2414	3249	185193	7.5498	3.8485	1.75587	
59	16.9492	3364 3481	195112 205379	7.6158 7.6811	3.8709 3.8930	1.76343 1.77085	
60	16.6667	3600	216000	7.7460	3.9149	1.77815	I
61	16.3934	3721	226981	7.8102	3.9365	1.78533	
62	16.1290	3844	238328	7.8740	3.9579	1.79239	
63	15.8730	3969	2 50047	7.9373	3.9791	1.79934	
64	15.6250	4096	262144	8.0000	4.0000	1.80618	
65 66	15.3846	4225	274625	8.0623 8.1240	4.0207	1.81291	
67	15.1515 14.9254	4356 4489	287496 300763	8.1240	4.0412 4.0615	1.81954 1.82607	
68	14.7059	4624	314432	8.2462	4.0817	1.83251	
69	14.4928	4761	328509	8.3066	4.1016	1.83885	
70	14.2857	4900	343000	8.3666	4.1213	1.84510	
71	14.0845	5041	357911	8.4261	4.1408	1.85126	
72	13.8889	5184	373248	8.4853	4.1602	1.85733	
73 74	13.6986 13.5135	5329 5476	389017 405224	8.5440 8.6023	4.1793 4.1983	1.86332 1.86923	
75 76	13.3333	5625 5776	421875 438976	8.6603 8.7178	4.2172	1.87 506 1.88081	
70	13.1579 12.9870	5929	436533	8.7750	4.2358 4.2543	1.88649	1
7 7 78	12.8205	6084	474552	8.8318	4.2727	1.89209	
79	12.6582	6241	493039	8.8882	4.2908	1.89763	
80	12.5000	6400	512000	8.9443	4.3089	1.90309	
81	12.3457	6561	531441	9.0000	4.3267	1.90849	
82 83	12.1951 12.0482	6724 6889	551368	9.0554	4.3445	1.91381	
84	11.9048	7056	571787 592704	9.1104 9.1652	4.3621 4.3795	1.91908 1.92428	
85	11.7647	7225	614125	9.2195	4.3968	1.92942	
86	11.6279	7396	636056	9.2736	4.4140	1.93450	
87 88	11.4943	7569	658503	9.3274	4.4310	1.93952	
	11.3636	7744	681472	9.3808	4.4480	1.94448	
89	11.2360	7921	704969	9.4340	4.4647	1.94939	
90	11.1111 10.9890	8100 8281	729000	9.4868	4.4814	1.95424	
91 92	10.8696	8464	7 5357 I 778688 804357	9·5394 9.5917	4·4979 4·5144	1.95904 1.96379	
93	10.7527	8649	804357	9.6437	4.5307	1.96848	I.
94	10.6383	8836	830584	9.6954	4.5468	1.97313	
95	10.5263	9025	857375	9.7468	4.5629	1.97772	
96	10.4167	9216	884736	9.7980	4.5789	1.98227	
97 98	10.3093 10.2041	9409 9604	912673 941192	9.8489 9.8995	4.5947	1.98677	I
90 99	10.1010	980 1	970299	9.9499	4.6104 4.6261	1.99123 1.99564	
100	10.0000	10000	1000000	10.0000	4.6416	2.00000	
101	9.90099	10201	1030301	10.0499	4.6570	2.00432	
102	9.80392	10404	1061208	10.0995	4.6723	2.00860	
103 104	9.70874 9.61538	10609 10816	1092727 1124864	10.1489 10.1980	4.6875	2.01284 2.01703	
						, 0	
105 10б	9.52381 9.43396	11025 11236	1157625 1191016	10.2470 10.2956	4.7177 4.7326	2.02119	
107	9.34579	11449	1225043	10.3441	4.7320	2.02531 2.02938	
108	9.25926	11664	1259712	10.3923	4.7622	2.03342	
109	9.17431	11881	1295029	10.4403	4.7769	2.03743	
			l <u></u>				
	_						-

						starting
n	$1000.\frac{1}{n}$	n ²	n ⁸	\n	⁸ / <i>n</i>	log. 74
110	9.09091	12100	1331000	10.4881	4.7914	2.04139
111	9.00901	12321	1367631	10.5357	4.8059	2.04532
112	8.92857					
	0.9205/	12544	1404928	10.5830	4.8203	2.04922
113	8.84956	12769	1442897	10.6301	4.8346	2.05308
114	8.77193	12996	1481544	10.6771	4.8488	2.05690
115	8.69565	1 3 2 2 5	1520875	10.7238	4.8629	2.06070
116	8.62069	13456	1560896	10.7703	4.8770	2.06446
117	8.54701	13689		10.8167	48010	2.06819
	0.54/01	13009	1601613		4.8910	
118	8.47458	1 3924	1643032	10.8628	4.9049	2.07188
119	8.40336	14161	1685159	10.9087	4.9187	2.07555
120	8.33333	14400	1728000	10.9545	4.9324	2.07918
121	8.26446	14641	1771561	11.0000	4.9461	2.08279
122	8.19672	14884	1815848	11.0454		2.08636
123	8.13008		1013040		4.9597	2.00030
	8.13008	15129	1860867	11.0905	4.9732	2.08991
124	8.06452	15376	1906624	11.1355	4.9866	2.09342
125	8.00000	1 562 5	1953125	11.1803	5.0000	2.09691
126	7.93651	15876	2000376	11.2250	5.0133	2.10037
127	7.87402	16129	2048383	11.2694	5.04.55	
	7.07402		2040303		5.0265	2.10380
128	7.81250	16384	2097152	11.3137	5.0397	2.10721
129	7.75194	16641	2146689	11.3578	5.0528	2.11059
130	7.69231	16900	2197000	11.4018	5.0658	2.11394
131	7.63359	17161	2248091	11.4455	5.0788	2.11727
132	7.57576	17424	2299968	11.4891	5.0916	2.12057
133	7.57576 7.51880	17689				
	7.51000		2352637	11.5326	5.1045	2.12385
134	7.46269	17956	2406104	11.5758	5.1172	2.12710
135	7.4074 1	18225	2460375	11.6190	5.1299	2.13033
136	7.35294	18496	2515456	11.6619	5.1426	2.1 3354
137	7.29927	18769	2571353	11.7047	5.1551	2.1 3672
138	7.24638	19044	2 57 1 3 53 262807 2	11.7473	5.1676	2.13988
139	7.19424	19321	2685619	11.7898	5.1801	2.13900
140					-	
140	7.14286	19600	2744000	11.8322	5.1925	2.14613
141	7.09220	19881	2803221	11.8743	5.2048	2.14922
142	7.04225	20164	2863288	11.9164	5.2171	2.1 5229
143	6.99301	20449	2924207	11.9583	5.2293	2.1 5534
144	6.94444	20736	2985984	12.0000	5.2415	2.15836
145	6.89655	21025	20.1862.5	100/06		
146	684022	21025	3048625	12.0416	5.2536	2.16137
	6.84932	21 316	3112136	12.0830	5.2656	2.16435
147	6.80272	21609	3176523	12.1244	5.2776	2.16732
148	6.7 5676	21904	3241792	12.1655 12.2066	5.2896	2.17026
149	6.71141	22201	3307949	12.2066	5.3015	2.17319
150	6.66667	22500	337 5000	12.2474	F 27 22	2.17600
·151	6.62252	22801		12.2474 12.2882	5.3133	2.17609
	6.57893		3442951	12.2002	5.3251	2.17898
152		23104	3511808	12.3288	5.3368	2.18184
1 53	6.53595	23409	3581577	12.3693	5.3485	2.18469
154	6.49351	23716	3652264	12.4097	5.3601	2.18752
155	6.45161	24025	3723875	12.4499	5 2777	2 10000
156 .	6.41026	24336	3796416	I 2.4900	5.3717	2.19033
	6.36943				5.3832	2.19312
1 57 1 58		24649	3869893	12.5300	5.3947	2.19590
I 50 I 59	6.32911 6.28931	24964 25281	3944312 4019679	12.5698 12.6095	5.4061	2.19866
		_	40.90/9	12:0093	5.4175	2.20140
160	6.25000	25600	4096000	12.6491	5.4288	2.20412
161	6.21118	25921	4173281	12.6886	5.4401	2.20683
162	6.17284	26244	4251 528	12.7279	5.4514	2.20952
163	6.13497	26569	4330747	12.7671	5.4626	2.21210
				12.8062		
164	0.09/50 1		4410044			
164	6.097 56	26896	4410944	12.0002	5.4737	2.21484

SMITHSONIAN TABLES.

.

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000.1	n^2	n ⁸	√n	∛12	log. 14
165	6.06061	27 22 5	4492125	12.8452	5.4848	2.21748
166	6.02410	27 556	4574296	12.8841	5.4959	2.22011
167	5.98802	27 889	4657463	12.9228	5.5069	2.22272
168	5.95238	28 224	4741632	12.9615	5.5178	2.22531
169	5.91716	28 561	4826809	13.0000	5.5288	2.22789
170	5.88235	28900	491 3000	13.0384	5.5397	2.23045
171	5.84795	29241	5000211	13.0767	5.5505	2.23300
172	5.81395	29584	5088448	13.1149	5.5613	2.23553
173	5.78035	29929	5177717	13.1529	5.5721	2.23805
174	5.74713	30276	5268024	13.1909	5.5828	2.24055
175	5.71429	30625	5359375	13.2288	5·5934	2.24304
176	5.68182	30976	5451776	13.2665	5:6041	2.24551
177	5.64972	31329	5545233	13.3041	5:6147	2.24797
178	5.61798	31684	5639752	13.3417	5:6252	2.25042
179	5.5 ⁸⁶ 59	32041	5735339	13.3791	5:6357	2.25285
180	5.55556	32400	5832000	13.4164	5.6462	2.25527
181	5.52486	32761	5929741	13.4536	5.6567	2.25768
182	5.49451	331 24	6028568	13.4907	5.6671	2.26007
183	5.46448	33489	6128487	13.5277	5.6774	2.26245
184	5.43478	33856	6229504	13.52647	5.6877	2.26482
185	5.40541	34225	6331625	13.6015	5.6980	2.26717
186	5.37634	34596	6434856	13.6382	5.7083	2.26951
187	5.34759	34969	6539203	13.6748	5.7185	2.27184
188	5.31915	35344	6644672	13.7113	5.7287	2.27416
189	5.29101	35721	6751269	13.7477	5.7388	2.27646
190 191 192 193 194	5.26316 5.23560 5.20833 5.18135 5.15464	36100 36481 36864 37249 37636	68 59000 696787 1 7077888 7 1890 57 7 301 384	1 3.7840 1 3.8203 1 3.8564 1 3.8924 1 3.9284	5.7489 5.7590 5.7690 5.7790 5.7790 5.7890	2.27875 2.28103 2.28330 2.28556 2.28780
195	5.12821	38025	7414875	13.9642	5.7989	2.29003
196	5.10204	38416	7529536	14.0000	5.8088	2.29226
197	5.07614	38809	7645373	14.0357	5.8186	2.29447
198	5.05051	39204	7762392	14.0712	5.8285	2.29667
199	5.02513	39601	7880599	14.1067	5.8383	2.29885
200	5.00000	40000	8000000	14.1421	5.8480	2.30103
201	4.97512	40401	8120601	14.1774	5.8578	2.30320
202	4.95050	40804	8242408	14.2127	5.8675	2.30535
203	4.92611	41209	8365427	14.2478	5.8771	2.30750
204	4.90196	41616	8489664	14.2829	5.8868	2.30963
205	4.8780 5	42025	861 51 2 5	14.3178	5.8964	2.31175
206	4.85437	42436	87 41 81 6	14.3527	5.9059	2.31387
207	4.83092	42849	88 6 97 4 3	14.3875	5.9155	2.31597
208	4.80769	43264	8 9 9 8 9 1 2	14.4222	5.9250	2.31806
209	4.78469	4 3681	9 1 2 9 3 2 9	14.4268	5.9345	2.32015
210	4.76190	44100	9261000	14.4914	5-9439	2.32222
211	4.73934	44521	9393931	14.5258	5-9533	2.32428
212	4.71698	44944	9528128	14.5602	5-9627	2.32634
213	4.69484	45369	9663597	14.5945	5-9721	2.32838
214	4.67290	45796	9800344	14.6287	5-9814	2.3304I
215	4.6511 6	46225	9938375	14.6629	5.9907	2.33244
216	4.62963	46656	10077696	14.6969	6.0000	2.33445
217	4.60829	47089	10218313	14.7309	6.0092	2.33646
218	4.58716	47524	10360232	14.7648	6.0185	2.33846
219	4.56621	47961	10503459	14.7986	6.0277	2.34044
		1			1	

n	1000.1	n^2	n ⁸	J <i>n</i>	Yn	log. <i>n</i>
220	4-54545	48400	10648000	14.8324	6.0368	2.34242
221	4.52489	48841	10793861	14.8661	6.04 59	2.34439
222	4.50450	49284	10941048	14.8997	6.0550	2.34635
	4.48431	49729	11089567	14.9332	6.0641	2.34830
223 224	4.46429	50176	11239424	14.9666	6.0732	2.35025
224	4.40429	301/0	112374-4	-4.9000	/5-	-55-5
225	4.44444	50625	11390625	15.0000	6.0822	2.35218
226	4.42478	51076	11 54 31 76	15.0333	6.0912	2.35411
227	4.40520	51 529	11697083	15.0665	6.1002	2.35603
228	4.38596	51984	11852352	1 5.0997	6.1091	2.35793
229	4.36681	52441	12008989	15.1327	6.† 180	2.35984
	_			6 - 8	6 1 0 6 0	0.06770
230	4.347 ⁸ 3	52900	12167000	15.1658	6.1269	2.36173
231	4.32900	53361	12326391	15.1987	6.1358	2.36361
232	4.31034	53824	12487168	15.2315	6.1446	2.36549
233	4.29185	54289	12649337	1 5.2643	6.1534	2.36736
234	4.27350	547 56	12812904	1 5.297 I	6.1622	2.36922
235	4.25532	55225	12977875	1 5.3297	6.1710	2.37107
236	4.23729	55696	13144256	15.3623		2.37291
	4.23729	56169	13312053	15.3948	6.1797 6.1885	2.37475
237 238	4.21941	56644	13481272	15.4272	6.1972	2.37658
2 <u>3</u> 0	4.18410	57121	13651919	15.4596	6.2058	2.37840
239	4.10410		*3*3*9	• J.+ JAA	0.2030	
240	4.16667	57600	13824000	15.4919	6.2145	2.38021
241	4.14938	58081	1 3997 521	15.5242	6.2231	2.38202
242	4.1 3223	58564	14172488	15.5563	6.2317	2.38382
243	4.11523	59049	14348907	15.5563 15.5885	6.2403	2.38561
244	4.09836	59536	14526784	15.6205	6.2488	2.38739
045		60005	T (POST OF	TE GEAE	6 1572	2.38917
245	4.08163	60025	14706125	1 5.6525 1 5.6844	6.2573 6.2658	
246	4.06504	60516	14886936	15.7162	6.2743	2.39094
247	4.04858	61009	1 5069223		6.2828	2.39270
248	4.03226	61 504	15252992	15.7480	-	2.39445
249	4.01606	62001	1 54 38 249	I 5.7797	6.2912	2.39620
250	4.00000	62500	1 562 5000	15.8114	6.2996	2.39794
251	3.98406	63001	1 581 32 51	15.8430	6.3080	2.39967
252	3.96825	63504	10003008	15.8745	6.3164	2.40140
253	3.95257	64009	16194277	15.9060	6.3247	2.40312
254	3.93701	64516	16387064	15.9374	6.3330	2.40483
				(0-		
255	3.921 57	65025	16581 37 5	15.9687	6.3413	2.40654
256	3.90625	65536	16777216	16.0000	6.3496	2.40824
² 57	3.89105	66049	16974593	16.0312	6.3579	2.40993
258	3.87597	66564	17173512	16.0624	6.3661	2.41162
² 59	3.86100	67081	17373979	16.0935	6.3743	2.41 330
260	3.8461 5	67600	17576000	16.1245	6.3825	2.41497
261	3.83142	68121	17779581	16.1555	6.3907	2.41664
262	3.81679	68644	17984728	16.1864	6.3988	2.41830
263	3.80228	69169	18191447	16.2173	6.4070	2.41996
264	3.78788	69696	18399744	16.2481	6.4151	2.42160
265 266	3.77358	70225	18609625 18821096	16.2788	6.4232	2.42325
200	3.75940	70756		16.3095	6.4312	2.42488
267	3.74532	71289	19034163	16.3401	6.4393	2.42651
268 269	3.73134 3.71747	71824 72361	19248832 19465109	16.3707 16.4012	6.4473 6.4553	2.42813 2.42975
	3-7-747	, -301	- 7753.09			
270	3.70370	72900	19683000	16.4317	6.4633	2.431 36
27 I	3.69004	73441	19902511	16.4621	6.4713	2.43297
272	3.67647	7 3984	20123648	16.4924	6.4792	2.43457
273	3.66300	74529	20346417	16.5227	6.4872	2.43616
274	3.64964	7 5076	20570824	16.5529	6.4951	2.43775
	1	1	<u> </u>			

·	<u> </u>		r	r	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n	1000.1	n ²	n ⁸	J <i>n</i>	¥n	log. n
275	3.63636	7 5 625	20796875	16.5831	6.5030	2.43933
276	3.62319	76176	21024576	16.61 22	6.5108	2.44091
277	3.61011	76729	21253933	16.6433	6.5187	2.44248
278	3.59712	77284	21484952	16.6733	6.5265	2.44404
279	3.58423	77841	21717639	16.7033	6.5343	2.44560
-/9	5.204-3	//041		10.7033	0.3343	2144,300
280	3.57143	78400	21952000	16.7332	6.5421	2.44716
281	3.55872	78961	22188041	10.7631	6.5499	2.44871
282	3.54610	79524	22425768	16.7929	6.5577	2.45025
283	3.53357	80089	22665187	16.8226	6.5654	2.45179
284	3.52113	80656	22906304	16.8523	6.5731	2.45332
285	3.50877	81225	23149125	16.8819	6.5808	2.45484
286	3.49650	81796	23393656	16.9115	6.5885	2.45637
287	3.48432		23393050		6.5962	2.45788
288		82369	23639903 23887872	16.9411		
289	3.47222 3.46021	82944		16.9706	6.6039	2.45939
209	3.40021	83521	241 37 569	17.0000	6.6115	2.46090
290	3.44828	84100	24389000	17.0294	6.6191	2.46240
291	3.43643	84681	24642171	17.0587	6.6267	2.46389
292	3.42466	85264	24897088	17.0880	6.6343	2.46538
293	3.41297	85849	251 537 57	17.1172	6.6419	2.46687
294	3.40136	86436	25412184	17.1464	6.6494	2.46835
295	3.38983	87025	25672375	17.1756	6.6569	2.46982
296	3.30903	87616		17.2047	6.6644	2.40982
	3.36700	88209	25934336 26198073		6.6719	
297 298	2.30700	88804	201900/3	17.2337	6.6794	2.47276
	3.35570		26463592	17.2627	6.6869	2.47422
299	3.34448	89401	267 30899	17.2916	0.0009	2.47 567
300	3·33333 3.32226	90000	27000000	17.3205	6.6943	2.47712
301	3.32226	90601	27270901	17.3494	6.7018	2.47857
302	3.31126	91204	27543608	17.3781	6.7092	2.48001
303	3.30033	91809	27818127	17.4069	6.7166	2.48144
304	3.28947	92416	28094464	17.4356	6.7240	2.48287
305	3.27869	93025	28372625	17.4642	6.7313	2.48430
306	3.26797	93636	28652616	17.4929	6.7387	2.48572
300	3.25733	94249	28934443	17.5214	6.7460	2.48714
308	3.24675	94864	29218112	17.5499	6.7533	2.48855
309	3.23625	95481	29503629	17.5784	6.7606	2.48996
_	5-5-5	2340-	-95-59	-7-57-4		
310	3.22581	96100	29791000	17.6068	6.7679	2.491 36
311	3.21 543	96721	30080231	17.6352	6.77 52	2.49276
312	3.20513	97344	30371328	17.6635	6.7824	2.49415
313	3.19489	97969	30664297	17.6918	6.7897	2.49 <u>5</u> 54
314	3.18471	98596	30959144	17.7200	6.7969	2.49693
315	3.17460	99225	31255875	17.7482	6.8041	2.49831
316	3.16456	99225 99856	31554496	17.7764	6.8113	2.49969
317	3.1 54 57	100489	31855013	17.8045	6.8185	2.50106
318	3.14465	101124	321 57432	17.8326	6.8256	2.50243
319	3.13480	101761	32461759	17.8606	6.8328	2.50379
320	2 12500	102400	32768000	17.8885	6.8399	2 50575
	3.12500	102400 103041	33076161	17.9165	6.8470	2.50515 2.50651
321	3.11527	103684	33386248	17.9444	6.8541	2.50786
322	3.10559		33698267	17.9444	6.8541 6.8612	
323 324	3.09598 3.08642	104329 104976	34012224	18.0000	6.8683	2.50920 2.51055
			•			0 00
325 326	3.07692	105625 106276	34328125	18.0278 18.0555	6.8753 6.8824	2.51188
	3.06748	100270	34645976 34965783	18.0831	6.8894	2.51322
327	3.05810	100929	35287552	18.1108	6.8964	2.51455
328	3.04878			18.1384		2.51587
329	3.03951	108241	35611289	10.1304	6.9034	2.51720
	·	. <u> </u>	·		·	

n	1000.1	n²	n ⁸	√n	∛72	log. n
330	3.03030	108900	35937000	18.1659	6.9104	2.51851
331	3.02115	109561	36264691	18.1934	6.9174	2.51983
332	3.01205	110224	36594368	18.2209	6.9244	2.52114
333	3.00300	110889	36926037	18.2483	6.9313	2.52244
334	2.99401	111556	37259704	18.2757	6.9382	2.5237 5
335	2.98507	112225	37 59537 5	18.3030	6.9451	2.52504
336	2.97619	112896	37933056	18.3303	6.9521	2.52634
337	2.96736	113569	3827 27 53	18.3576	6.9589	2.52763
338	2.95858	114244	3861 4472	18.3848	6.9658	2.52892
339	2.94985	114921	389 58 219	18.4120	6.9727	2.53020
340	2.94118	115600	39304000	18.4391	6.9795	2.53148
341	2.93255	116281	39651821	18.4662	6.9864	2.53275
342	2.92398	116964	40001688	18.4932	6.9932	2.53403
343	2.91545	117649	40353607	18.5203	7.0000	2.53529
344	2.90698	118336	40707584	18.5472	7.0068	2.53656
345	2.89855	119025	41063625	18.5742	7.0136	2.53782
346	2.89017	119716	41421736	18.6011	7.0203	2.53908
347	2.88184	120409	41781923	18.6279	7.0271	2.54033
348	2.87356	121104	42144192	18.6548	7.0338	2.54158
349	2.86533	121801	42508549	18.6815	7.0406	2.54283
350	2.85714	122500	4287 5000	18.7083	7.0473	2.54407
351	2.84900	123201	43243 551	18.7350	7.0540	2.54531
352	2.84091	123904	4361 4208	18.7617	7.0607	2.54654
353	2.83286	124609	43986977	18.7883	7.0674	2.54777
354	2.82486	125316	44361 864	18.8149	7.0740	2.54900
355	2.81690	1 2602 5	44738875	18.8414	7.0807	2.55023
356	2.80899	1 267 36	45118016	18.8680	7.0873	2.55145
357	2.80112	1 27 449	45499293	18.8944	7.0940	2.55267
358	2.79330	1 28 164	45882712	18.9209	7.1006	2.55388
359	2.78552	1 28881	46268279	18.9473	7.1072	2.55509
360	2.77778	1 29600	46656000	18.9737	7.1138	2.55630
361	2.77008	1 30321	47045881	19.0000	7.1204	2.55751
362	2.76243	1 31 044	47437928	19.0263	7.1269	2.55871
363	2.75482	1 31 769	47832147	19.0526	7.1335	2.55991
364	2.74725	1 32496	48228544	19.0788	7.1400	2.56110
365	2.73973	133225	48627125	19.1050	7.1466	2.56229
366	2.73224	133956	49027896	19.1311	7.1531	2.56348
367	2.72480	134689	49430863	19.1572	7.1596	2.56467
368	2.71739	135424	49836032	19.1833	7.1661	2.56585
369	2.71003	136161	50243409	19.2094	7.1726	2.56703
370	2.70270	1 36900	50653000	19.2354	7.1791	2.56820
371	2.69542	1 37641	51064811	19.2614	7.1855	2.56937
372	2.68817	1 38 384	51478848	19.2873	7.1920	2.57054
373	2.68097	1 391 29	51895117	19.3132	7.1984	2.57171
374	2.67380	1 39876	52313624	19.3391	7.2048	2.57287
375	2.66667	140625	527 34 37 5	19.3649	7.2112	2.57403
376	2.65957	141376	531 57 376	19.3907	7.2177	2.57519
377	2.65252	142129	53582633	19.4165	7.2240	2.57634
378	2.64550	142884	540101 52	19.4422	7.2304	2.57749
379	2.63852	143641	54439939	19.4679	7.2368	2.57864
380	2.631 58	144400	54872000	19.4936	7.2432	2.57978
3 ⁸ 1	2.62467	145161	55306341	19.5192	7.2495	2.58092
3 ⁸ 2	2.61780	145924	55742968	19.5448	7.2558	2.58206
3 ⁸ 3	2.61097	146689	56181887	19.5704	7.2622	2.58320
3 ⁸ 4	2.60417	147456	56623104	19.5959	7.2685	2.58433

						i
n	1000. ¹ / ₈	n ²	n ⁸	√n	¥n.	log. n
385	2.59740	148225	57066625	19.6214	7.2748	2.58546
386	2.59067	148996	57512456	19.6469	7.2811	2.58659
387	2.58398	149769	57960603	19.6723	7.2874	2.58771 2.58883
388	2.57732	150544	58411072	19.6977 19.7231	7.2936 7.2999	2.58995
389	2.57069	151321	58863869	19.7231	7.2999	2.30993
390	2.56410	1 52100	59319000	19.7484	7.3061	2.59106
391	2.55754	152881	59776471 60236288	19.7737	7.3124	2.59218
392	2.55102	153664	606230288	19.7990 19.8242	7.3186	2.59329
393	2.54453	I 54449 I 5 5236	60698457 61162984	19.8242	7.3248 7.3310	2.59439 2.59550
394	2.53807	- 33230			7.55-0	
395	2.53165	156025	61629875	19.8746	7.3372	2.59660
396	2.52525	156816	62099136	19.8997	7.3434	2.59770
	2.51889	1 57 609	62570773	19.9249	7.3496	2.59879 2.59988
398	2.51250	158404	63044792 63521199	19.9499 19.975 0	7.3558 7.3619	2.60097
399	2.50627	159201	03521199	19.9730		
400	2.50000	160000	64000000	20.0000	7.3681	2.60206
401	2.49377	160801	64481201	20.0250	7.3742 7.3803	2.60314 2.60423
402	2.48756	161604	64964808 65450827	20.0499	7.3864	2.60531
403 404	2.481 39 2.47 52 5	162409 163216	65939264	20.0749 20.0998	7.3925	2.60638
404	2.4/ 323	103210	03939204	20.09990		
405	2.46914	164025	66430125	20.1246	7.3986	2.60746
406	2.46305	164836	66923416	20.1494	7.4047	2.60853
407	2.45700	165649	67419143	20.1742	7.4108	2.60959 2.61066
408	2.45098	166464 167281	67917312	20.1990	7.4169 7.4229	2.61172
409	2.44499	10/201	68417929	20.2237	7.4229	2.011/2
410	2.43902	168100	68921000	20.2485	7.4290	2.61278
411	2.43309	168921	69426531	20.2731	7.4350	2.61384
412	2.42718	169744 170569	69934528 70444997	20.2978 20.3224	7.4410 7.4470	2.61490 2.61595
413 414	2.42131 2.41546	171396	70957944	20.3470	7.4530	2.61700
		-7-39-	7-757944			
415	2.40964	172225	71473375	20.3715	7.4590	2.61805
416	2.40385	173056	71991296	20.3961	7.4650	2.61909 2.62014
417 418	2.39808	173889	72511713	20.4206 20.4450	7.4710 7.4770	2.62118
410	2.39234 2.38663	174724 175561	73560059	20.4695	7.4829	2.62221
420	2.38095	176400	74088000	20.4939	7.4889	2.62325
421	2.37530	177241 178084	74618461 75151448	20.5183 20.5426	7.4948 7.5007	2.62428 2.62531
422	2.36967 2.36407	178929	75686967	20.5420	7.5067	2.62634
423	2.35849	179776	76225024	20.5913	7.5126	2.62737
425	0.05004	180625	76765625	20.61 55	7.5185	2.62839
426	2.35294 2.34742	181476	77308776	20.6398	7.5244	2.62939
420	2.34/42	182329	77854483	20.6640	7.5302	2.63043
428	2.33645	183184	78402752	20.6882	7.5361	2.63144
429	2.33100	184041	78953589	20.7123	7.5420	2.63246
430	2.32558	184900	79507000	20.7364	7.5478	2.63347
431	2.32019	185761	80062991	20.7605	7.5537	2.63448
432	2.31481	186624	80621568	20.7846	7.5595	2.63548
433	2.30947	187489	81182737	20.8087	7.5654	2.63649
434	2.30415	188356	81746504	20.8327	7.5712	2.63749
435	2.29885	189225	82312875	20.8567	7.5770	2.63849
436	2.29358	190090	82881856	20.8806	7.5828	2.63949
437 438	2.28833	190969	83453453	20.9045	7.5886	2.64048 2.64147
438	2.28311	191844 192721	84027672 84604519	20.9284	7.5944 7.6001	2.64246
439	2.27790	192/21	04004319		1.0001	2.04240

—			1	1		
<i>n</i>	$1000.\frac{1}{n}$	n ²	n ⁸	√ <i>n</i>	∛n	log. <i>n</i>
440	2.27 27 3 2.267 57	193600 194481	85184000 85766121	20.9762 21.0000	7.6059 7.6117	2.64345
441	2.26244		86350888			2.64444
442		195364	860350000	21.0238	7.6174	2.64542
443	2.25734	196249	86938307	21.0476	7.6232	2.64640
444	2.25225	197136	87 528 384	21.0713	7.6289	2.64738
445	2.24719	198025	88121125	21.0950	7.634 6	2.64836
446	2.24215	198916	88716536	21.1187	7.6403	2.64933
447 448	2.23714	199809	89314623	21.1424	7.6460	2.65031
448	2.23214	200704	8991 5392	21.1660	7.6517	2.65128
449	2.22717	201601	90518849	21.1896	7.6574	2.65225
450	2.22222	202 500	91125000	21.2132	7.6631	2.65321
45 ¹	2.21730	203401	91733851	21.2368	7.6688	2.65418
452	2.21239	204304	92345408	21.2603	7.6744	2.65514
453	2.20751	205209	92959677	21.2838	7.6801	2.65610
454	2.20264	2001 I Ô	93576664	21.3073	7.6857	2.65706
455	2.19780	207025	94196375	21.3307	7.6914	2.65801
456	2.19298	207936	94818816	21.3542	7.6970	2.65896
457	2.18818	208849	95443993	21.3776	7.7026	2.65992
457 458	2.18341	209764	96071912	21.4009	7.7082	2.66087
459	2.17865	210681	96702579	21.4243	7.7138	2.66181
460	2 17201	111600				a 66 6
461	2.17391 2.16920	211600	97336000	21.4476	7.7194	2.66276
461		212521	97972181	21.4709	7.7250	2.66370
463	2.16450	21 3444	98611128	21.4942	7.7306	2.66464
	2.1 5983	214369	99252847	21.5174	7.7362	2.66558
464	2.1 5517	21 5296	99 ⁸ 97344	21.5407	.7.7418	2.66652
465	2.1 5054	216225	100544625	21.5639	7.7473	2.66745
466	2.14592	217156	101194696	21.5870	7.7529	2.66839
467	2.14133	218089	101847563	21.6102	7.7584	2.66932
468	2.1 367 5	219024	102 5032 32	21.6333	7.7639	2.67025
469	2.1 3220	219961	103161709	21.6564	7.7695	2.67117
470	2.12766	220900	103823000	21.6795	7.7750	2.67210
471	2.12314	221841	104487111	21.7025	7.7805	2.67302
472	2.11864	222784	105154048	21.7256	7.7860	2.07302
473	2.11416	223729	105823817	21.7486		2.67394 2.67486
474	2.10970	224677	106496424	21.7715	7.791 5 7.7970	2.67 578
475	2.10526	225625	107171875	21.7945	7.8025	2.67669
476	2.10084	226576	107850176	21.8174	7.8079	2.67761
477 478	2.09644	227 529	108531333	21.8403	7.8134	2.67852
	2.00205	228484	109215352	21.8632	7.8188	2.67943
479	2.08768	229441	109902239	21.8861	7.8243	2.68034
480	2.08333	230400	110592000	21.9089	7.8297	2.68124
481	2.07900	231 361	111284641	21.9317	7.8352	2.68215
482	2.07469	232324	111980168	21.9545	7.8406	2.68305
4 ⁸ 3	2.07039	233289	112678587	21.9773	7.8460	2.68395
484	2.06612	234256	113379904	22.0000	7.8514	2.68485
485	2.06186	235225	114084125	22.0227	7.8568	2.68 574
486	2.05761	236196	114791256	22.0454	7.8622	2.68664
487	2.05339	237169	115501303	22.0681	7.8676	2.687 53
488	2.04918	238144	116214272	22.0907	7.8730	2.68842
489	2.04499	239121	116930169	22.1133	7.8784	2.68931
490	2.04082	240100	117649000			
491	2.03666	241081	118370771	22.1359 22.1585	7.8837	2.69020
492	2.03252	242064	119095488	22.1505	7.8891	2.69108
493	2.02840	243049	119823157		7.8944	2.69197
493				22.2036	7.8998	2.69285
777	2.02/20	244070			H 00-1-	
	2.02429	244036	1 20553784	22.2261	7.9051	2.69373

SMITHSONIAN TABLES.

TABLE 3.

.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

		r				, ·····;
n	1000.1	n ²	# ⁸	172	¥n	log. n
495	2.02020	245025	121287375	22.2486	7.9105	2.69461
496	2.01613	246016	122023936	22.2711	7.9158	2.69548
497	2.01 207	247009	122763473	22.2935	7.9211	2.69636
498	2.00803	248004	123505992	22.31 59	7.9264	2.69723
499	2.00401	249001	124251499	22.3383	7.9317	2.69810
500	2.00000	250000	125000000	22.3607	7.9370	2.69897
501	1.99601	251001	125751501	22.3830	7.9420	2.69984
502	1.99203	252004	126506008	22.4054	7.9476	2.70070
503	1.98807	253009	1 27 263527	22.4277	7.9528	2.70157
504	1.98413	254016	128024064	22.4499	7.9581	2.70243
505	1.98020	255025	128787625	22.4722	7.9634	2.70329
506	1.97628	256036	129554216	22.4944	7.9686	2.70415
507	1.97239	2 57049	1 3032 3843	22.5167	7.9739	2.70501
508	1.96850	258064	131096512	22.5389	7.9791	2.70586
509	1.96464	259081	1 31872229	22.5610	7.9843	2.70672
510	1.96078	260100	132651000	22.5832	7.9896	2.707 57
511	1.95695	261121	133432831	22.6053		2.70842
512	1.95312	262144	134217728	22.6274	7.9948 8.0000	2.70927
513	1.94932	263169	125005697	22.6495	8.0052	2.7 101 2
514	1.94553	264196	1,5796744	22.6716	8.0104	2.71096
515	1.94175	265225	136590875	22.6936	8.0156	2.71181
516	1.93798	266256	1 37 388096	22.7156	8.0208	2.71265
517	1.93424	267280	138188413	22.7376	8.0260	2.71349
518	1.93050	268324	1 38991 832	22.7596	8.0311	2.71433
519	1.92678	269361	1 397 98359	22.7816	8.0363	2.71 517
520	1.92308	270400	140608000	22.8035	8.0415	2.71600
521	1.91939	271441	141420761	22.8254	8.0466	2.71684
522	1.91 57 1	272484	142236648	22.8473	8.0517	2.71767
523	1.91205	273529	143055667	22.8692	8.0569	2.71850
524	1.90840	274576	143877824	22.8910	8.0620	2.71933
525	1.90476	27 562 5	144703125	22.9129	8.0671	2.72016
526	1.90114	276676	145531576	22.9347	8.0723	2.72099
527	1.89753		146363183	22.9565	8.0774	2.72181
528	1.89394	277729 278784	147197952	22.9783	8.0825	2.72263
529	1.89036	279841	148035889	23.0000	8.o87Ğ	2.72346
530	1.88679	280900	148877000	23.0217	8.0927	2.7 2 4 2 8
531	1.88324	281961	149721291	23.0434	8.0978	2.72509
532	1.87970	283024	1 50 568 7 68	23.0651	8.1028	2.72591
533	1.87617	284080	151419437	23.0868	8.1079	2.72673
534	1.87266	285156	1 5227 3304	23.1084	8.1130	2.72754
535	1.86916	286225	153130375	23.1301	8.1180	2.72835
536	1.86567	287296	153990656	23.1517	8.1231	2.72916
537	1.86220	288369	1 548 541 53	23.1733	8.1281	2.72997
537 538	1.85874	289444	155720872	23.1948	8.1332	2.73078
539	1.85529	290521	156590819	23.2164	8.1382	2.73159
540	1.85185	291600	1 57 464000	23.2379	8.1433	2.7 32 39
54 I	1.84843	292681	158340421	23.2594	8.1483	2.73320
542	1.84502	293764	1 592 200 88	23.2809	8.1533	2.73400
543	1.84162	294849	160103007	23.3024	8.1583	2.7 3480
544	1.83824	295936	160989184	23.3238	8.1633	2.73560
545	1.83486	297025	161878625	23.3452	8.1683	2.73640
546	1.831 50	298116	162771336	23.3666	8.1733	2.73719
547 548	1.82815	299209	163667323	23.3880	8.1783	2.7 3799
	1.82482	300304	164566592	23.4094	8.1833	2.73878
549	1.82149	301401	165469149	23.4307	8.1882	2.73957
		1		1		

92	$1000.\frac{1}{n}$	n^2	n ⁸	Jn	⁸ √ <i>n</i> 2	log. n
550	1.81818	302 500	16637 5000	23.4521	8.1932	2.74036
551	1.81488	303601	107284151	23.4734	8.1982	2.74115
552	1.81159	304704	168196608	23.4947	8.2031	2.74194
553	1.80832	305809	169112377	23.5160	8.2081	2.74273
554	1.80505	306916	170031464	23.5372	8.2130	2.74351
555	1.80180	308025	170953875	23.5584	8.2180	2.74429
556	1.79856	3091 36	171879616	23.5797	8.2229	2.74507
557 558	1.79533	310249	172808693	23.6008	8.2278	2.74586
	1.79211	311364	173741112	23.6220	8.2327	2.74663
559	1.78891	312481	174676879	23.6432	8.2377	2.7474I
560 561	1.78571	313600	175616000	23.6643	8.2426	2.74819
501	1.78253	314721 315844	176558481	23.6854	8.2475	2.74896
562	1.77936	31 5844	177 504 328	23.7065	8.2524	2.74974
563	1.77620	316969	178453547	23.7276	8.2573	2.7 5051
564	1.77305	318096	179406144	23.7487	8.2621	2.7 51 28
565	1.76991	319225	180362125	23.7697	8.2670	2.75205
566	1.76678	320356	181321496	23.7908 23.8118	8.2719	2.7 5282
567	1.76367	321489	182284263	23.8118	8.2768	2.7 5 3 5 8
568	1.76056	322624	183250432	23.8328	8.2816	2.75435
` 569	1.75747	323761	184220009	23.8537	8.2865	2.7 5 5 1 1
570	1.75439	324900	185193000	23.8747	8.2913	2.75587
57 I	1.75131	326041	186169411	23.8956	8.2962	2.7 5664
572	1.74825	327184	187149248	23.9165	8.3010	2.75740
573	1.74520	328329	188132517	23.9374	8.3059	2.75815
574	1.74216	329476	189119224	23.9583	8.3107	2.7 5891
575	1.73913	330625	190109375	23.9792	8.3155	2.7 5967
576	1.7 361 1	331776	191102976	24.0000	8.3203	2.76042
577	1.73310	332929	192100033	24.0208	8.3251	2.76118
577 578	1.7 3010	334084	193100552	24.0416	8.3300	2.76193
579	1.72712	335241	194104539	24.0624	8.3348	2.76268
580	1.72414	336400	195112000	24.0832	8.3396	2.76343
581	1.72117	337561	196122941	24.1039	8.3443	2.76418
582	1.71821	338724	197137368	24.1247	8.3491	2.76492
583	1.71527	339889	198155287	24.1454	8.3539	2.76567
584	1.71233	341056	199176704	24.1661	8.3587	2.76641
585	1.70940	342225	200201625	24.1868	8.3634	2.76716
586	1.70648	343396	201230056	24.2074	8.3682	2.76790
587	1.70358	344569	202262003	24.2281	8.3730	2.76864
588	1.70068	345744	203297472	24.2487	8.3777	2.76938
589	1.69779	346921	204336469	24.2693	8.3825	2.77012
590	1.69492	348100	205379000	24.2899	8.3872	2.77085
591	1.69205	349281	206425071	24.3105	8.3919	2.77159
592	1.68919	350464	207474688	24.3311	8.3967	2.77232
593	1.68634	351649	208527857	24.3516	8.4014	
594	1.68350	352836	209584584	24.3721	8.4061	2.77305 2.77379
595	1.68067	254025	27064875	01.0006	8	
596	1.67785	354025 355216	210644875 211708736	24.3926 24.41 31	8.4108 8.4155	2.77452
597	1.67 504	356409	212776173	24.4336	8.4202	2.77 525
598	1.67224	357604	21 3847 192	24.4330	8.4202	2.77 597 2.77670
599	1.66945	358801	214921799	24.4340	8.4296	2.77743
600	1.66667	360000	216000000	24 4040	8 1010	
601	1.66380	361201	217081801	24.4949 24.51 53	8.4343 8.4390	2.77815 2.77887
602	1.66113	362404	218167208	24.5357	8.4437	2.77960
603	1.65837	363609	219256227	24.5561	8.4484	2.78032
	1.65563	364816	220348864	24.5764	8.4530	2.78104
604						

TABLE 3.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

n	1000. <u>1</u>	n ²	# ⁸	√n	⁸ √ <i>n</i>	log. n
605	1.65289	366025	221445125	24.5967	8.4577	2.78176
606	1.65017	367236	222545016	24.6171	8.4623	2.78247
607	1.64745	368449	223648543	24.6374	8.4670	2.78319
608	1.64474	369664	224755712	24.6577	8.4716	2.78390
609	1.64204	370881	225866529	24.6779	8.4763	2.78462
610	1.63934	372100	226981000	24.6982	8.4809	2.78533
611	1.63666	373321	228099131	24.7184	8.4856	2.78604
612	1.63399	374544	229220928	24.7 386	8.4902	2.78675
613	1.63132	37 5769	230346397	24.7 588	8.4948	2.78746
614	1.62866	376996	231475544	24.7790	8.4994	2.78817
615	1.62602	378225	232608375	24.7992	8.5040	2.78888
616	1.62338	379456	233744896	24.8193	8.5086	2.78958
617	1.62075	380689	234885113	24.8395	8.51 32	2.79029
618	1.61812	381924	236029032	24.8596	8.5178	2.79099
619	1.61551	383161	237176659	24.8797	8.5224	2.79169
620	1.61290	384400	238328000	24.8998	8.5270	2.79239
621	1.61031	385641	239483061	24.9199	8.5316	2.79309
622	1.60772	386884	240641848	24.9399	8.5362	2.79379
623	1.60514	388129	241804367	24.9600	8.5408	2.79449
624	1.60256	389376	242970624	24.9800	8.5453	2.79518
625	1.60000	390625	244140625	25.0000	8.5499	2.79934
626	I.59744	391876	245314376	25.0200	8.5544	2.79657
627	1.59490	393129	246491883	25.0400	8.5590	2.79727
628	1.59236	394384	247673152 248858189	25.0599	8.5635	2.79796
629	1.58983	395641	248858189	25.0799	8.5681	2.79865
630	1.58730	396900	250047000	2 5.0998	8.5726	2.79934
631	I.58479	398161	251239591	25.1197	8.5772 8.5817	2.80003
632	1.58228	399424	252435968	25.1396	8.5817	2.80072
633	1.57978	400689	253636137	25.1595	8.5862	2.80140 2.80209
634	1.57729	401956	254840104	25.1794	8.5907	2.80209
635	1.57480	403225	256047875	25.1992	8.5952	2.80277
636	1.57233	404496	2 57 2 594 56	25.2190	8.5997	2.80346
637	1.56986	405769	258474853	25.2389	8.6043	2.80414
638	1.56740	407044	2 5969407 2	25.2587	8.6088	2.80482
639	1.56495	408321	260917119	25.2784	8.6132	2.80550
640	1.56250	409600	262144000	25.2982	8.6177	2.80618
641	1.56006	410881	263374721	25.3180	8.6222	2.80686
642	1.55763	412164	264609288	25.3377	8.6267	2.807 54
643	1.55521	413449	265847707	25.3574	8.6312 8.6357	2.80821 2.80889
644	1.55280	414736	267089984	25.3772	0.0357	2.00009
645	1.55039	416025	268336125	25.3969	8.6401	2.80956
646	1.54799	417316	269586136	25.4165	8.6446	2.81023
647	1.54560	418609	270840023	25.4362	8.6490	2.81090
648	1.54321	419904	272097792	25.4558	8.6535	2.81158
649	1.54083	42120 1	273359449	² 5.47 55	8.6579	2.81224
650	1.53846	422500	274625000	25.4951	8.6624	2.81291
651	1.53610	423801	27 58944 51	25.5147	8.6668	2.81358
652	1.53374	425104	277167808	25.5343	8.6713	2.81425
653 654	1.53139 1.52905	426409 427716	278445077 279 7 26264	25.5539 25.5734	8.67 57 8.6801	2.81491 2.81558
		//~~				
655	1.52672	429025	281011375	25.5930	8.6845 8.6890	2.81624 2.81690
656	1.52439	430336	282300416	25.6125 25.6320	8.6934	2.81090
657 658	1.52207 1.51976	431649 432964	283593393 284890312	25.6515	8.6978	2.81823
659	1.51745	434281	286191179	25.6710	8.7022	2.81889
U 239	~-3*/43	404201		-5-7		
· · · ·					·	·

					1	
<i>n</i>	$1000.\frac{1}{n}$	n ²	n ⁸	√n.	⁸ √ <i>n</i>	log. n
660	1.51515	435600	287496000	25.6905	8.7066	2.81954
661	1.51286	436921	288804781	25.7099	8.7110	2.82020
662	1.51057	438244	290117528	25.7294	8.7154	2.82086
663	1.50830	439569	291434247	25.7488	8.7198	2.82151 2.82217
664	1.50602	440896	292754944	25.7682	8.7241	
665	1.50376	442225	294079625	25.7876	8.7285	2.82282
666	1.50150	443556	295408296	25.8070	8.7329	2.82347
667 668	1.49925	444889	296740963	25.8263 25.8457	8.7373 8.7416	2.82413 2.82478
669	1.49701 1.49477	446224 447561	298077632 299418309	25.8650	8.7460	2.82543
670					8 = 102	2.82607
	1.49254	448900	300763000	25.8844	8.7503	2.82672
671 672	1.49031 1.48810	450241	302111711	25.9037	8.7 547 8.7 590	2.02012
673	1.48588	451 584 452929	303464448 304821217	25.9230 25.9422	8.7634	2.82737 2.82802
674	1.48368	454276	306182024	25.9615	8.7677	2.82866
			-			
675	1.48148	455625	307546875	25.9808	8.7721	2.82930
676	1.47929	456976	308915776	26.0000	8.7764 8.7807	2.82995
677 678	1.47710	458329	310288733	26.0192	0.7807	2.83059 2.83123
679	1.47493	459684	311665752	26.0384	8.7850 8.7893	2.83187
0/9	1.47275	461041	31 30468 39	26.0576		-
680	1.47059	462400	314432000	26.0768	8.7937	2.83251
681	1.46843	463761	31 58 21 24 1	26.0960	8.7080	2.83315
682	1.46628	465124	317214568	26.1151	8.8023	2.83378
683	1.46413	466489	318611987	26.1343	8.8066	2.83442
684	1.46199	467856	320013504	26.1 534	8.8108	2.83506
685	1.45985	469225	321419125	26.1725	8.81 52	2.83569
686	1.45773	470596	322828856	26.1916	8.8194	2.83032
687 688	1.45560	47196 9	324242703	26.2107	8.8237	2.83690
	1.45349	473344	325660672	26.2298	8.8280	2.837 59
689	1.45138	4747 21	327082769	26.2488	8.8323	2.83822
690	1.44928	476100	328509000	26.2679	8.8366	2.83885
691	1.44718	477481	329939371	26.2869	8.8408	2.83948
692	1.44509	478864	331373888	26.3059	8.8451	2.84011
693	1.44300	480249	332812557	26.3249	8.8493	2.84073
694	1.44092	481636	334255384	26.3439	8.8536	2.84426
695	1.43885	483025	335702375	26.3629	8.8578 8.8621	2.84198
696	1.43678	484416	337 1 53 536 33860887 3	26.3818	8.8621	2.84261
697	1.43472	485809	338608873	26.4008	8.8663	2.84323
698	1.43266	487204	340068392	26.4197	8.8706	2.84386
699	1.43062	488601	341 532099	26.4386	8.8748	2.84448
700	1.42857	490000	343000000	26.4 57 5	8.8790	2.84510
701	1.42653	491401	344472101	26.4764	8.8833	2.84572
702	1.42450	492804	345948408	26.4953	8.8875	2.84634
703	1.42248	494209	347428927	26.5141	8.8917	2.84696
704	1.42045	495616	34891 3664	26.5330	8.8959	2.847 57
705	1.41844	497025	350402625	26.5518	8.9001	2.84819
706	1.41643	498436	351895816	26.5707	8.9043	2.84880
707	1.41443	499849	353393243	26.5895	8.9085	2.84942
708 709	I.41243 I.41044	501264 502681	354894912 356400829	26.6083 26.6271	8.91 <i>2</i> 7 8.9169	2.85003 2.85065
		5				2.0300S
710	1.40845	504100	357911000	26.6458	8.9211	2.85126
711	1.40647	505521	359425431	26.6646	8.9253	2.85187
712	1.40449	506944	360944128	26.6833	8.9295	2.85248
713 714	1.40252 1.4005б	508369	362467097	26.7021	8.9337	2.85309
/*4	1.400.30	509796	363994344	26.7208	8.9378	2.85370
MITHSONIAN						

n	1000.1	n ²	n ⁸	√n	Vn	log. n
715	1.39860	511225	365525875	26.7395	8.9420	2.85431
716	1.39665	512656	367061696	26.7 582	8.9462	2.85491
717	1.39470	514089	368601813	26.7769	8.9503	2.85552
718	1.39276	51 5524	370146232	26.7955	8.9545	2.85612
719	1.39082	516961	371694959	26.8142	8.9587	2.85673
	52	5				
720	1.38889	518400	373248000	26.8328	8.9628	2.85733
721	1.38696	519841	374805361	26.8514	8.9670	2.85794 2.85854
722	1.38504	521284	376367048	26.8701	8.9711	2.85854
723	1.38313	522729	377933067	26.8887	8.9752	2.85914
724	1.38122	524176	379503424	26.9072	8.9794	2.85974
725			-99	af9	0 .0	
	1.37931	525625	381078125	26.9258	8.9835 8.9876	2.86034
726	1.37741	527076	382657176	26.9444		2.86094
727 728	1.37552	528529	384240583	26.9629	8.9918	2.86153
729	1.37363	529984	385828352	26.9815	8.9959	2.86213 2.86273
/29	1.37174	531441	387420489	27.0000	9.0000	2.002/3
730	1.36986	532900	389017000	27.0185	9.0041	2.86332
731	1.36799	534361	390617891	27.0370	9.0082	2.86392
732	1.36612	535824	392223168	27.0555	9.0123	2.86451
733	1.36426	537289	393832837	27.0740	9.0164	2.86510
734	1.36240	538756	395446904	27.0924	9.0205	2.86570
	-					0.00
735	1.36054	540225	397065375	27.1109	9.0246	2.86629
736	1.35870	541696	398688256	27.1293	9.0287	2.86688
737 738	1.35685	543169	400315553	27.1477	9.0328	2.86747
	1.35501	544644	401947272	27.1662	9.0369	2.86806
739	1.35318	546121	403583419	27.1846	9.0410	2.86864
740	1.35135	547600	405224000	27.2029	9.0450	2.86923
741	1.34953	549081	406869021	27.2213	9.0491	2.86982
742	1.34771	550564	408518488	27.2397	9.0532	2.87040
743	1.34590	552049	410172407	27.2580	9.0572	2.87099
744	1.34409	553536	411830784	27.2764	<u>9.0613</u>	2.87157
		22020				
745	1.34228	555025	413493625	27.2947	9.0654	2.87216
746	1.34048	556516	415160936	27.3130	9.0694	2.87274
747 748	1.33869	558009	416832723 418508992	27.3313	9.0735	2.87332
	1.33690	559504	418508992	27.3496	9.0775	2.87390
749	1.33511	561001	420189749	27.3079	9.0816	2.87448
750	1.33333	562500	421875000	27.3861	9.0856	2.87506
751	1.33156	564001	423564751	27.4044	9.0896	2.87564
752		565504	425259008	27.4226	9.0937	2.87622
753	1.32979 1.32802	567009	426957777	27.4408	9.0977	2.87679
754	1.32626	568516	428661064	27.4591	9.1017	2.87737
	-					1
755	1.32450	570025	430368875	27.4773	9.1057	2.87795 2.87852
756	1.32275	571536	432081216	27.4955	9.1098	2.87852
757 758	1.32100	573049	433798093	27.5136	9.1138	2.87910
	1.31926	574564	435519512	27.5318	9.1178	2.87967
7 59	1.31752	576081	437245479	27.5500	9.1218	2.88024
760	1.31 579	577600	438976000	27.5681	9.1258	2.88081
761	1.31406	579121	440711081	27.5862	9.1298	2.88138
762	1.31234	580644	4424 507 28	27.6043	9.1338	2.88195
763	1.31062	582169	444194947	27.6225	9.1378	2.88252
764	1.30890	583696	445943744	27.6405	9.1418	2.88309
	-			6-06	A F (-R	0 99 066
765	1.30719	585225	447697125	27.6586	9.1458	2.88366
766	1.30548	586756	449455096	27.6767	9.1498	2.88423 2.88480
767	1.30378	588289	451217663	27.6948 27.7128	9.1537 9.1577	2.88536
768	1.30208	589824	452984832		9.1577	2.88593
769	1.30039	591361	454756609	27.7308	9.101/	2.00393
L						

·						
n	1000. <u>1</u>	n ²	n ⁸	J72	∛ท	log. n
770	1.29870	592900	456533000	27.7489	9.1657	2.88649
771	1.29702	59444I	458314011	27.7669	9.1696	2.88705
		595984	460099648	27.7840	9.1736	2.88762
772	1.29534		461889917	27.7849 27.8029	9.1775	2.88818
773	1.29366	597 529	463684824	27.8209	9.1815	2.88874
774	1.29199	599076	403004024	27.0209	9.1013	• •
775	1.29032	600625	465484375	27.8388	9.1855	2.88930
776	1.28866	60217б	467288576	27.8568	9.1894	2.88986
777	1.28700	603729	469097433	27.8747	9.1933	2.89042
778	1.28535	605284	470910952	27.8927	9.1973	2.89098
770	1.28370	606841	472729139	27.9106	9.2012	2.891 54
779	1.203/0	000041	+/~/~5-35	-/ /	,	
780	1.28205	608400	474552000	27.9285	9.2052	2.89209
781	1.28041	609961	476379541	27.9464	9.2091	2.89265
782	1.27877	611524	478211768	27.9643	9.2130	2.89321
783	1.27714	61 3089	480048687	27.9821	9.2170	2.89376
784	1.27551	614656	481890304	28.0000	9.2209	2.89432
,	/55-	J-				
785	1.27389	616225	483736625	28.0179	9.2248	2.89487
786	1.27226	617796	485587656	28.0357	9.2287	2.89542
787	1.27065	619369	487443403	28.0535	9.2326	2.89597
788	1.26904	620944	489303872	28.0713	9.2365	2.89653
789	1.26743	622521	491169069	28.0891	9.2404	2.89708
		601-00	102020000	28.1069	0.2442	2.89763
790	1.26582	624100	493039000	28.1009	9.2443 9.2482	2.89818
791	1.26422	625681	494913671			
792	1.26263	627264	496793088	28.1425	9.2521	2.89873
793	1.26103	628849	498677257	28.1603	9.2560	2.89927
794	1.25945	630436	500566184	28.1780	9-2599	2.89982
795	1.25786	632025	5024 5087 5	28.1957	9.2638	2.90037
	1.25/00	633616	502459875 504358336	28.2135	9.2677	2.90091
796	1.25628		504350330	28.2312	9.2716	2.90146
797 798	1.25471	635209 636804	506261573	28.2489		2.90200
	1.25313	030004	508169592	28.2666	9.27 54	
799	1.25156	638401	510082399	20.2000	9.2793	2.90255
800	1.25000	640000	51 2000000	28.2843	9.2832	2.90309
801	1.24844	641601	51 392 2401	28.3019	9.2870	2.90363
802	1.24688	643204	515849608	28.3196	9.2909	2.90417
803	1.24533	644809	517781627	28.3373	9.2948	2.90472
804	1.24378	646416	519718464	28.3549	9.2986	2.90526
	107					
805	1.24224	648025	521660125	28.3725	9.3025	2.90580
806	1.24069	649636	523606616	28.3901	9.3063	2.90634
807	1.23916	651249	525557943	28.4077	9.3102	2.90687
808	1.23762	652864	527514112	28.4253	9.3140	2.90741
809	1.23609	654481	52947 5129	28.4429	9.3179	2.90795
810	1.23457	656100	531441000	28.4605	9.3217	2.90849
811		657721	533411731	28.4781	9.3255	2.90902
812	1.23305		535387328	28.4956	9.3294	2.90956
	1.23153	659344 660969	535307320			2.91009
813	1.23001	662106		28.5132	9.3332	2.91069
814	1.22850	662596	539353144	28.5307	9.3370	2.91002
815	1.22699	664225	541 34337 5	28.5482	9.3408	2.91116
816	1.22549	665856	543338496	28.5657	9.3447	2.91169
817	1.22399	667489	545338513	28.5832	9.3485	2.91222
818	1.22249	669124	547 34 34 32	28.6007	9.3523	2.91275
819	1.22100	670761	549353259	28.6182	9.3561	2.91 328
000		6-0-0-0		086-16		0 0 ⁰ -
820 821	1.21951	672400 674041	551368000	28.6356	9.3599	2.91381
822	1.21803		553387661	28.6531 28.6705	9.3637	2.91434
	1.21655	675684	555412248	20.0705	9.3675	2.91487
823	1.21 507	677 329 678976	557441767	28.6880	9.3713	2.91 540
824	1.21359	078970	559476224	28.7054	9.37 51	2.91 593
I	I	l	I	<u> </u>	<u> </u>	

					{	
n	1000.1	n ²	n ⁸	√n	⁸ √ <i>n</i>	log. n
825	1.21212	680625	561 51 562 5	28.7228	9.3789	2.91645
826	1.21065	682276	563559976	28.7402	9.3827	2.91698
827	1.20919	683929	565609283	28.7576	9.3865	2.91751
828	1.20773	685584	567663552	28.7750	9.3902	2.91803
829	1.20627	687241	569722789	28.7924	9.3940	2.91855
830	1.20482	688900	571787000	28.8097	9.3978	2.91908
831	1.20337	690561	573856191	28.8271	9.4016	2.91960
832	1.20192	692224	57 59 30 368	28.8444	9.4053	2.92012
833	1.20048	693889	578009537	28.8617	9.4091	2.92065
834	1.19904	695556	580093704	28.8791	9.4129	2.92117
835	1.19760	697225	582182875	28.8964	9.4166	2.92169
836	1.19617	698896	584277056	28.9137	9.4204	2.92221
837	1.19474	700369	586376253	28.9310	9.4241	2.92273
838	1.19332	702244	588480472	28.9482	9.4279	2.92324
839	1.19190	703921	590589719	28.9655	9.4316	2.92376
840	1.19048	705600	592704000	28.9828	9.4354	2.92428
841	1.18006	707281	594823321	29.0000	9.4391	2.92480
842	1.18765	708964	596947688	29.0172	9.4429	2.92531
843	1.18624	710649	599077107	29.0345	9.4466	2.92583
844	1.18483	712336	601211584	29.0517	9.4503	2.92634
845	1.18343	714025	603351125	29.0689	9.4541	2.92686
846	1.18203	715716	605495736	29.0861	9.4578	2.02737
847	1.18064	717409	607645423	29.1033	9.4615	2.92788
848	1.17925	719104	609800192	29.1204	9.4652	2.92840
849	1.17786	720801	611960049	29.1376	9.4690	2.92891
850	1.17647	722500	614125000	29.1 548	9.4727	2.92942
851	1.17509	724201	616295051	29.1719	0.4764	2.92993
852	1.17371	725904	618470208	29.1890	9.4801	2.93044
853	1.17233	727609	620650477	29.2062	9.4838	2.93095
854	1.17096	729316	622835864	29.2233	9.4875	2.93146
855	1.16959	731025	62 50 26 37 5	29.2404	9.4912	2.93197
856	1.16822	732736	627222016	29.2575	9.4949	2.93247
8.7	1.16686	734449	629422793	29.2575 29.2746	9.4986	2.93298
858	1.16550	736164	631628712	29.2916	9.5023	2.93349
859	1.16414	737881	633839779	29.3087	9.5060	2.93399
860	1.16279	739600	• 636056000	29.3258	9.5097	2.93450
861	1.16144	741321	638277381	29.3428	9.5134	2.93500
862	1.16009	743044	640503928	29.3598	9.5171	2.93551
863	1.1 587 5	744769	642735647	29.3769	9.5207	2.93601
864	1.15741	746496	644972544	29.3939	9.5244	2.93651
865	1.15607	748225	647214625	29.4109	9.5281	2.93702
866	1.15473	749956	649461896	29.4279	9.5317	2.937 52
867	1.15340	751689	651714363	29.4449	9.5354 .	2.93802
868	1.1 5207	753424	653972032	29.4618	9.5391	2.93852
869	1.15075	755161	656234909	29.4788	9.5427	2.93902
870	1.14943	7 56900	658503000	29.4958	9.5464	2.93952
871	1.14811	7 58641	660776311	29.5127	9.5501	2.94002
872	1.14679	760384	663054848	29.5296	9.5537	2.94052
873	1.14548	762129	665338617	29.5466	9.5574	2.94101
. 874	1.14416	763876	667627624	29.5635	9.5610	2.941 51
875	1.14286	765625	669921875	29.5804	9.5647	2. 9420I
876	1.14155	767376	672221376	- 29.5973	9.5683	2.94250
	1.14025	769129	674526133	29.6142	9.5719	2.94300
877 878	1.13895	770884	676836152	29.6311	9.57 56	2.9 4349
879	1.13766	772641	679151439	29.6479	9.5792	2.94399
	3 ,)				
L	•	·				

·····						
n	1000. ¹ / <i>n</i>	n ²	n ⁸	√n	8J72	log. <i>n</i>
880	1.13636	774400	681472000	29.6648	9.5828	2.94448
881	1.13507	776161	683797841	29.6816	9.5865	2.94498
882	1.13379	777924	686128968	29.6985	9.590I	2.94547
883	1.13250	779689	688465387	29.7153	9.5937	2.94596
884	1.13122	781456	690807104	29.7321	9.5973	2.94645
	v	, 13				
885	1.12994	783225	693154125	29.7489	9.6010	2.94694
886	1.12867	784996	695506456	29.7658	9.6046	2.94743
887	1.12740	786769	697864103	29.7825	9.6082	2.94792
888	1.12613	788544	700227072	29.7993	9.6118	2.94841
889	1.12486	790321	702595369	29.8161	9.61 54	2.94890
					. (
890	1.12360	792100	704969000	29.8329	9.6190	2.94939
891	1.12233	793881	707347971	29.8496	9.6226	2.94988
892	1.12108	795664	709732288	29.8664	9.6262	2.95036
893	1.11982	797449	712121957	29.8831	9.6298	2.95085
894	1.11857	799236	714516984	29.8998	9.6334	2.95134
895	1 11722	801025	716917375	29.9166	9.6370	2.95182
896	1.11732 1.11607	802816	719323136	29.9333	9.6406	2.95231
897	1.11483	804609	721734273	29.9500	9.6442	2.95279
898	1.11359	806404	7241 50792	29.9666	9.6477	2.95328
899	1.11235	808201	726572699	29.9833	9.6513	2.95376
699	1.11233	000201	/203/2099	29.9033	9.03-3	935/*
900	1.11111	810000	729000000	30.0000	9.6549	2.95424
901	1.10988	811801	731432701	30.0167	<u>9.6585</u>	2.95472
902	1.10865	813604	733870808	30.0333	9.6620	2.95521
903	1.10742	815409	736314327	30.0500	9.6656	2.95569
904	1.10619	817216	738763264	30.0666	9.6692	2.95617
		_				
905	1.10497	819025	741217625	30.0832	9.6727	2.95665
906	1.10375	820836	743677416	30.0998	9.6763	2.95713
907	1.10254	822649	746142643	30.1164	9.6799	2.95761
908	1.10132	824464	748613312	30.1330	9.6834	2.95809
909	1.10011	826281	751089429	30.1496	9.6870	2.95856
910	1.09890	828100	772771000	30.1662	0.600r	2.07004
911		829921	753571000 756058031	30.1828	9.6905	2.95904
912	1.09769 1.09649	831744	758550528		9.6941 9.6976	2.95952
912	1.09529	833569	761048497	30.1993 30.2159	9.7012	2.95999 2.96047
914	1.09409	835396	763551944	30.2324	9.7047	2.96095
2-4		033390	7~333-944	30.2324	9.7047	
915	1.09290	837225	766060875	30.2490	9.7082	2.96142
916	1.09170	839056	768575296	30.2655	9.7118	2.96190
917	1.09051	840889	771095213	30.2820	9.71 53	2.96237
918	1.08932	842724	773620632	30.2985	9.7188	2.96284
919	1.08814	844561	7761 51 559	30.31 50	9.7224	2.96332
920	1 08606	816.00	778699000		0.5555	
1	1.08696	846400	778688000	30.3315	9.7259	2.96379
921	1.08578	848241	781229961	30.3480	9.7294	2.96426
922	1.08460	850084	783777448	30.3645	9.7329	2.96473
923	1.08342 1.08225	851929 853776	786330467 788889024	30.3809	9.7364	2.96520
924	1.00223	⁰ 33/70	70000024	3°•3974	9.7400	2.96567
925	1.08108	855625	791453125	30.41 38	9.7435	2.96614
926	1.07991	857476	794022776	30.4302	9.7470	2.96661
927	1.07875	859329	796597983	30.4467	9.7505	2.96708
928	1.07759	861184	799178752	30.4631	9.7540	2.96755
929	1.07643	863041	801765089	30.4795	9.7575	2.96802
020		00	0			
930	1.07527	864900	804357000	30.4959	9.7610	2.96848
931	1.07411	866761	806954491	30.5123	9.7645	2.96895
932	1.07296	868624	809557568	30.5287	9.7680	2.96942
933	1.07181	870489	812166237	30.5450	9.7715	2.96988
934	1.07066	872356	814780504	30.5614	9.77 50	2.97035
L	<u> </u>	l	1		<u> </u>	1

	1				0.	
n	1000.1	n ²	n ⁸	√ <i>n</i>	V n	log. <i>n</i>
935	1.06952	874225	817400375	30.5778	9.7785	2.97081
936	1.06838	876096	820025856	30.5941	9.7819	2.97128
937	1.06724	877969	822656953	30.6105	9.7854	2.97174
938	1.06610	879844	825293672	30.6268	9.7889	2.97220
939	1.06496	881721	827936019	30.6431	9.7924	2.97267
940	1.06383	88 3600	8 30 584000	30.6594	9·7959	2.97313
941	1.06270	88 548 1	8 332 37621	30.6757	9·7993	2.97359
942	1.06157	887 364	8 35896888	30.6920	9.8028	2.97405
943	1.06045	889249	8 38 561807	30.7083	9.8063	2.97451
944	1.05932	891 1 36	8 41 2 32 384	30.7246	9.8097	2.97497
945	1.05820	893025	843908625	30.7409	9.8132	2.97543
946	1.05708	894916	846590536	30.7571	9.8167	2.97589
947	1.05597	896809	849278123	30.7734	9.8201	2.97635
948	1.05485	898704	851971392	30.7896	9.8236	2.97681
949	1.05374	900601	854670349	30.8058	9.8270	2.97727
950	1.05263	902500	8 57 37 5000	30.8221	9.8305	2.97772
951	1.05152	904401	86008 5351	30.8383	9.8339	2.97818
952	1.05042	906304	86280 1 408	30.8545	9.8374	2.97864
953	1.04932	908209	865 52 31 77	30.8707	9.8408	2.97909
954	1.04822	910116	868 2 50664	30.8869	9.8443	2.97955
955	1.04712	91 202 5	870983875	30.9031	9.8477	2.98000
956	1.04603	91 3936	873722816	30.9192	9.8511	2.98046
957	1.04493	91 5849	876467493	30.9354	9.8546	2.98091
958	1.04384	917764	879217912	30.9516	9.8580	2.98137
959	1.04275	919681	881974079	30.9677	9.8614	2.98182
960	1.04167	921600	884736000	30.9839	9.8648	2.98227
961	1.04058	923521	887503681	31.0000	9.8683	2.98272
962	1.03950	925444	890277128	31.0161	9.8717	2.98318
963	1.03842	927369	893056347	31.0322	9.8751	2.98363
964 .	1.03734	929296	895841344	31.0483	9.8785	2.98408
965	1.03627	931225	898632125	31.0644	9.8819	2.98453
966	1.03520	933156	901428696	31.0805	9.8854	2.98498
967	1.03413	935089	904231063	31.0966	9.8888	2.98543
968	1.03306	937024	907039232	31.1127	9.8922	2.98588
969	1.03199	938961	909853209	31.1288	9.8956	2.98532
970	1.03093	940900	912673000	31.1448	9.8990	2.98677
971	1.02987	942841	915498611	31.1609	9.9024	2.98722
972	1.02881	944784	918330048	31.1769	9.9058	2.98767
973	1.02775	946729	921167317	31.1929	. 9.9092	2.98811
974	1.02669	948676	924010424	31.2090	9.9126	2.98856
975	1.02564	950625	926859375	31.2250	9.9160	2.98900
976	1.02459	952576	929714176	31.2410	9.9194	2.98945
977	1.02354	954529	932574833	31.2570	9.9227	2.98989
978	1.02249	956484	935441352	31.2730	9.9261	2.99034
979	1.02145	958441	938313739	31.2890	9.9295	2.99078
980	1.02041	960400	941192000	31.3050	9.9329	2.99123
981	1.01937	962361	944076141	31.3209	9.9363	2.99167
982	1.01833	964324	946966168	31.3369	9.9396	2.99211
983	1.01729	966289	949862087	31.3528	9.9430	2.99255
984	1.01626	9682 5 6	952763904	31.3688	9.9464	2.99300
985	1.01 523	970225	955671625	31.3847	9-9497	2.99344
986	1.01 420	972196	958585256	31.4006	9-9531	2.99388
987	1.01 317	974169	961504803	31.4166	9-9565	2.99432
988	1.01 21 5	976144	964430272	31.4325	9-9598	2.99476
989	1.01 11 2	978121	967361669	31.4484	9-9632	2.99520

SMITHSONIAN TABLES.

i

11	$1000.\frac{1}{n}$	n ²	n ⁸	√n	8 ∥ <i>7</i> 2	log. n
990 991 992 993 994	1.01010 1.00908 1.00806 1.00705 1.00604	980100 982081 984064 986049 988036	970299000 973242271 976191488 979146657 982107784	31.4643 31.4802 31.4960 31.5119 31.5278	9.9666 9.9699 9.9733 9.9766 9.9800	2.99564 2.99607 2.99651 2.99695 2.99739
995 996 997 998 999 1000	1.00503 1.00402 1.00301 1.00200 1.00100	990025 992016 994009 996004 998001	98 507487 5 988047936 991026973 994011992 997002999 100000000	31.5436 31.5595 31.5753 31.5911 31.6070 31.6228	9.9833 9.9866 9.9900 9.9933 9.9967 10.0000	2.99782 2.99826 2.99870 2.99913 2.99957 3.00000

SMITHSONIAN TABLES.

22

CIRCUMFERENCE AND AREA OF CIRCLE IN TERMS OF DIAMETER d.

đ	πď	$\frac{1}{4}\pi d^2$	d	πď	$\frac{1}{4}\pi d^2$	d	πď	$\frac{1}{4}\pi d^2$
10	31.416	78.5398	40	125.66	1256.64	70	219.91	3848.45
11	34.558	95.0332	41	128.81	1320.25	71	223.05	3959.19
12	37.699	113.097	42	131.95	1385.44	72	226.19	4071.50
13	40.841	1 32.7 32	43	135.09	1452.20	73	229.34	4185.39
14	43.982	1 53.938	44	138.23	1520.53	74	232.48	4300.84
15	47.124	1 76.71 5	45	141.37	1590.43	75	235.62	4417.86
16	50.265	201.062	46	144.51	1661.90	76	238.76	4536.46
17	53.407	226.980	47	147.65	1734.94	77	241.90	4656.63
18	56.549	254.469	48	150.80	1809.56	78	245.04	4778.36
19	59.690	283.529	49	1 53.94	1885.74	79	248.19	4901.67
20	62.832	314.159	50	1 57.08	1963.50	80	251.33	5026.55
21	65.973	346.361	51	1 60.22	2042.82	81	254.47	5153.00
22	69.115	380.133	52	163.36	2123.72	82	257.61	5281.02
23	72.257	415.476	53	166.50	2206.18	83	260.75	5410.61
24	75-398	452.389	54	169.65	2290.22	84	263.89	5541.77
25	78.540	490.874	55	172.79	2375.83	85	267.04	5674.50
26	81.681	530.929	56	175.93	2463.01	86	270.18	5808.80
27	84.823	572.555	57	179.07	2551.76	87	273.32	5944.68
28	87.965	61 5.7 52	58	182.21	2642.08	88	276.46	6082.12
29	91.106	660. 520	59	185.35	2733.97	89	279.60	6221.14
30	94.248	706.8 58	60	188.50	2827.43	90	282.74	6361.73
31	97.389	7 54 .768	61	191.64	2922.47	91	285.88	6503.88
32	100.53	804.248	62	194.78	3019.07	92	289.03	6647.61
33	103.67	855.299	63	197.92	3117.25	93 °	292.17	6792.91
34	106.81	907.920	64	201.06	3216.99	94	295.31	6939.78
35	109.96	962.113	65	204.20	3318.31	95	298.45	7088.22
36	113.10	1017.88	66	207.35	3421.19	96	301.59	7238.23
37	116.24	107 5.21	67	210.49	3525.65	97	304.73	7 389.81
38	119.38	1134.11	68	213.63	3631.68	98	307.88	7 542.96
39	122.52	1194.59	69	216.77	3739.28	99	311.02	7697.69

SMITHSONIAN TABLES.

·

23

LOCARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Parts.								
10 11 12 13 14	0414 0792 1139	0453 0828 1173	0086 0492 0864 1206 1523	0531 0899 1239	0569 0934 1271	0607 0969 1303	0645 1004 1335	0294 0682 1038 1367 1673	0719 1072 1399	1430	1 4 3 3 3	8 8	3 12 11 10 10 9	17 15 14 13	5 21 19 17 16 15	23 21 19	29 26 24	33 30 28 26	34 31 29
15 16 17 18 19	2041 2304 2553	2068 2330 2577	1818 2095 2355 2601 2833	2122 2380 2625	2148 2405 2648	2175 2430 2672	2201 2455 2695	2227 2480 2718	2253 2504 2742	2014 2279 2529 2765 2989	3 3 2 2 2 2	6 5 5 5 4	8 8 7 7 7		13	16 15 14	18 17 16	22 21 20 19 18	24 22 21
20 21 22 23 24	3222	3243	3054 3263 3464 3655 3838	3284	3304	3324 3522 3711	3345 3541 3729	3160 3365 3560 3747 3927	3385 3579 3766	3404 3 508	2 2 2 2 2 2	4 4 4 4	6 6 6 5	8		12	13		18 17 17
25 26 27 28 29	41 50 4314 4472	4166 4330 4487	4014 4183 4346 4502 4654	4200 4362 4518	4216 4378 4533	4232 4393 4548	4249 4409 4564	4099 4265 4425 4579 4728	4281 4440 4594	4298 4456 4609	2 2 2 2 1	3 3 3 3 3 3 3 3	5 5 5 4	7 76 6 6	9 8 8 7	10 10 9 9 9	12 11 11 11 10	13 13 12	15 14 14
30 31 32 33 34	4914 5051 5185	4928 5065 5198	4800 4942 5079 5211 5340	4955 5092 5224	4969 5105 5 ² 37	4983 5119 5250	4997 5132 5263	4871 5011 5145 5276 5403	5024 51 59 5289	5038 5172 5302	I I I I I	3 3 3 3 3 3 3	4 4 4 4	6 5 5 5 5	7 7 7 6 6	988888	9		12 12 12
35 36 37 38 39	5563 5682 5798	5575 5694 5809	5465 5587 5705 5821 5933	5599 5717 5832	5611 5729 5843	5623 5740 5855	57 52 5866	5527 5647 5763 5 ⁸ 77 5988	5775 5888	5670 5786 5899	I I I I I	2 2 2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 5	7 7 7 7 7 7 7		10 10 9 9	11 10 10
40 41 42 43 44	6128 6232 6335	6138 6243 6345	6042 6149 6253 6355 6454	6160 6263 6365	6170 6274 6375	6180 6284 6385	6191 6294 6395	6096 6201 6304 6405 6503	6212 6314 6415	6222 6325 6425	I I I I I	2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4	5 5 5 5 5 5	6 6 6 6 6	8 7 7 7 7	9 8 8 8 8	10 9 9 9 9
45 46 47 48 49	6628 6721 6812	6637 6730 6821	6551 6646 6739 6830 6920	6656 6749 6839	6665 6758 6848	6675 6767 6857	6684 6776 6866	6599 6693 6785 6875 6964	6702 6794 6884	6712 6803 6893	I I I I I	2 2 2 2 2 2	33333	4 4 4 4	5 5 4 4	6 6 5 5 5	7 76 6	8 7 7 7 7 7	9 8 8 8 8
50 51 52 53 54	7076 7160 7243	7084 7168 7251	7007 7093 7177 7259 7340	7101 7185 7267	7110 7193 7275	7118 7202	7126 7210 7292	7300	7143 7226 7308	7152 7235 7316	I I I I I	2 2 2 2 2	3 3 2 2 2 2	3 3 3 3 3 3	4 4 4 4	5 5 5 5 5 5 5	6 6 6 6	7 7 7 6 6	8 8 7 7 7
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SMITHSONIAN TABLES.

.

LOCARITHMS OF NUMBERS.

TABLE 5.

N.	0	1	2	3	4	5	6	7,	8	9	Γ		F	Prop). I	Part	ts.		
55 56 57 58 59	7482 7559 7634	7490 7566 7642	7497 7574 7649	7427 7505 7582 7657 7731	7513 7589 7664	7 520 7 597 7672	7451 7528 7604 7679 7752	7536 7612 7686	7543 7619 7694	7551 7627 7701	1 I I I I I	2 2 2 1 1	3 2 2 2 2 2 2	4 3 3 3 3 3 3 3	5 4 4 4 4 4	6 5 5 4 4	7 5 5 5 5 5 5 5	8 6 6 6 6 6	9 7 7 7 7 7 7
60 61 62 63 64	7 ⁸ 53 7924 7993	7860 7931 8000	7868 7938 8007	7803 7875 7945 8014 8082	7882 7952 8021	7889 7959 8028	7825 7896 7966 8035 8102	7903 7973 8041	7910 7980 8048	7917 7987 8055	I I I I I	1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3	4 4 3 3	4 4 4 4	55555	6 6 5 5	6 6 6 6
65 66 67 68 69	8195 8261 8325	8202 8267 8331	8209 8274 8338	8149 8215 8280 8344 8407	8222 8287 8351	8228 8293 8357	8235 8299	8241 8306 8370	8248 8312 8376	8319 8382	I I I I I	I I I I I	2 2 2 2 2 2	3 3 3 2	3 3 3 3 3 3	4 4 4 4	5 5 4 4	5 5 5 5 5 5	6 6 6 6
70 71 72 73 74	8513 8573 8633	8519 8579 8630	8525 8585 8645	8470 8531 8591 8651 8710	8537 8597 8657	8 543 8603 8663	8488 8549 8609 8669 8727	8555 8615 8675	8561 8621 8681	8627 8686	1 1 1 1 1	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5 5	6 5 5 5 5 5
75 76 77 78 79	8808 8865 8921	8814 8871 8927	8820 8876 8932	8768 8825 8882 8938 8938 8993	8831 8887 8943	8837 8893 8949	8785 8842 8899 8954 9009	8848 8904 8960	8854 8910 8965	8859 8915 8971	1 1 1 1 1 1	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3	3 3 3 3 3	4 4 4 4	5 5 4 4 4	5 5 5 5 5 5
80 81 82 83 84	9085 9138 9191	9090 9143 9196	9096 9149 9201	9047 9101 9154 9206 9258	9106 9159 9212	9112 9165 9217	9063 9117 9170 9222 9274	9122 9175 9227	9128 9180 9232	9133 9186 9238	I I I I	I 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5 5 5 5 5
85 86 87 88 89	9345 9395 9445	9350 9400 9450	9355 9405 9455	9309 9360 9410 9460 9509	9365 9415 9465	9370 9420 9469	9375 9425	9380 9430 9479	9385 9435 9484	9440 9489	1 0 0	1 1 1 1 1	2 2 1 1 1	2 2 2 2 2 2 2	3 3 2 2 2	3 3 3 3 3 3	4 3 3 3	4 4 4 4	5 5 4 4 4
90 91 92 93 94	9590 9638 9685	9595 9643 9689	9600 9647 9694	9557 9605 9652 9699 9745	9609 9657 9703	9614 9661 9708	9571 9619 9666 9713 9759	9624 9671 9717	9628 9675 9722	9633 9680	00000	1 1 1 1 1	I T I I I	2 2 2 2 2 2 2	2 2 2 2 2 2	33333	3 3 3 3 3 3 3	4 4 4 4	4 4 4 4
95 96 97 98 99	9823 9868 9912	9827 9872 9917	9832 9877 9921	9791 9836 9881 9926 9969	9841 9886 9930	9845 9890 9934	9805 9850 9894 9939 9983	9854 9899 9943	9859 9903 9948	9863 9908	00000	1 1 1 1	I I I I I	2 2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 3	4 4 4 4
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

TABLE 6.

ANTILOCARITHMS.

L.	0	1	2	3	4	5	6	7	8	9			P	roŗ). I	Pari	ts.	-	
.00 .01 .02 .03 .04	1023 1047 1072	1026 1050 1074	1005 1028 1052 1076 1102	1030 1054 1079	1033 1057 1081	1059 1084	1014 1038 1062 1086 1112	1064 1089	1067 1091	1069 1094	1 0 0 0 0	2 0 0 0 0 1	3 1 1 1 1 1	4 1 1 1 1 1	5 I I I I I	6 I I I 2	7 2 2 2 2 2 2	8 2 2 2 2 2	9 2 2 2 2 2 2
.05 .06 .07 .08 .09	1148 1175 1202	1151 1178 1205	1127 1153 1180 1208 1236	1156 1183 1211	1159 1186 1213	1161 1189 1216	1138 1164 1191 1219 1247	1167 1194 1222	1169 1197 1225	1172 1199 1227	00000	I I I I I	I I I I I	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 2	2 2 2 3 3
. 10 .11 .12 .13 .14	1288	1291	1 265 1 294 1 324 1 355 1 387	1297	1300	1303 1334 136 5	1276 1306 1337 1368 1400	1309 1340 1371	1312 1343 1374	1315 1346 1377	00000	I I I I I	I I I I I	I I I I I	I 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2	2 2 2 3 3	3 3 3 3 3 3 3
. 15 .16 .17 .18 .19	1445 1479 1514	1449 1483 1517	1419 1452 1486 1521 1556	1455 1489 1524	1459 1493 1528	1462 1496 1531	1432 1466 1500 1535 1570	1469 1503 1538	1472 1507 1542	1476 1510 1545	00000	I I I I I	I I I I I	I I I I I	2 2 2 2 2 2 2	2 2 2 2 2 2 2	2 2 2 2 3	3 3 3 3 3 3 3	333333333
. 20 .21 .22 .23 .24	1622 1660 1698	1626 1663 1702	1 592 1629 1667 1706 1746	1633 1671 1710	1637 1675 1714	1641 1679 1718	1607 1644 1683 1722 1762	1648 1687 1726	1652 1690 1730	1656 1694 1734	00000	I I I I I	I I I I I	I 2 2 2 2	2 2 2 2 2 2 2	2 2 2 2 2 2 2	3 3 3 3 3 3	3 3 3 3 3 3 3	3 3 3 4 4
.25 .26 .27 .28 .29	1820 1862 1905	1824 1866 1910	1786 1828 1871 1914 1959	1832 1875 1919	1837 1879 1923	1841 1884	1803 1845 1888 1932 1977	1849 1802	1854 1807	1858 1901	00000	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2	2 3 3 3 3	3 3 3 3 3 3	3 3 4 4	4 4 4 4 4
.30 .31 .32 .33 .34	2042 2089 2138	2046 2094 2143	2004 2051 2099 2148 2198	2056 2104 2153	2061 2109 2158	2065 2113 2163	2023 2070 2118 2168 2218	2075 2123 2173	2080 2128 2178	2084 2133 2183	0 0 0 1	I I I I I	I I I 2	2 2 2 2 2	2 2 2 2 3	333333	3 3 3 4	4 4 4 4	4 4 4 5
. 35 .36 .37 .38 .39	2291 2344 2399	2296 2350 2404	2249 2301 2355 2410 2466	2307 2360 2415	2312 2366 2421	2317 2371 2427	2270 2323 2377 2432 2489	2328 2382 2438	2333 2388 2443	2339 2393 2449	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 4	4 4 4 5	5 5 5 5 5 5 5 5
. 40 .41 .42 .43 .44	2570 2630 2692	2576 2636 2698	2523 2582 2642 2704 2767	2588 2649 2710	2594 2655 2716	2600 2661 2723	2547 2606 2667 2729 2793	2612 2673 2735	2618 2679 2742	2624 2685 2748	I I I I I	I I I I I	2 2 2 2 2 2 2 2	2 2 3 3	3 3 3 3 3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5 5 5 5 5	55666
.45 .46 .47 .48 .49	2884 2951 3020	2891 2958 3027	2831 2897 2965 3034 3105	2904 2972 3041	2911 2979 3048	2917 2985	2858 2924 2992 3062 3133	2931 2999	2938 3006	2944 301 3	I I I I I	I I I I I	2 2 2 2 2 2	3 3 3 3 3	3 3 3 4 4	4 4 4 4	5 5 5 5 5 5 5 5	55566	6 6 6 6 6
L.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	8

ANTILOGARITHMS.

TABLE 6.

L.	0	1	2	3	4	5	6	7	8	9			 P	rop		Par	+a		
											1	2		-	. г 5		τυ. 7	ø	9
. 50 .51 .52 .53 .54	3236 3311 3388	3243 3319 3396	3251 3327 3404	3184 3258 3334 3412 3491	3266 3342 3420	3273 3350 3428	3206 3281 3357 3436 3516	3289 3365 3443	3296 3373 3451	3304 3381 3459	I I I I I	I 2 2 2 2	222222	3 3 3 3 3 3	4 4 4 4 4 4	45555	55566	66666 6	7 7 7 7
.55 .56 .57 .58 .59	3715	3724 3811	3733	3573 3656 3741 3828 3917	37 50 3837	3673 3758 3846	3597 3681 3767 3855 3945	3690 3776 3864	3698 3784 3873	3707 3793 3882	I I I I I	2 2 2 2 2 2 2	2 3 3 3 3 3	3 3 4 4	4 4 4 5	5 5 5 5 5 5 5 5 5	6 6 6 6 6	7 7 7 7 7 7	7 8 8 8 8
. 60 .61 .62 .63 .64	4074 4169 4266	4083 4178 4276	4093 4188 4285	4009 4102 4198 4295 4395	4111 4207 4305	4121 4217 4315	4036 4130 4227 4325 4426	4140 4236 4335	41 50 4246 4345	4256 4355	I 1 I I I	2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4	5 5 5 5 5 5 5	6 6 6 6 6	6 7 7 .7	7 8 8 8 8	8 9 9 9
. 65 .66 .67 .68 .69	45 7 1 4677 4786	4581 4688 4797	4592 4699 4808	4498 4603 4710 4819 4932	4613 4721 4831	4624 4732 4842	4529 4634 4742 4853 4966	4645 4753 4864	4656 4764 4875	4667 4775 4887	I I I I I	2 2 2 2 2 2	3 3 3 3 3	4 4 4 5	55566	6 6 7 7 7	7 78 8 8	9 9	9 10 10 10
.70 .71 .72 .73 .74	5129 5248 5370	5140 5260 5383	51 52 5272 5395	5047 5164 5284 5408 5534	5176 5297 5420	5188 5309 5433	5082 5200 5321 5445 5572	5212 5333 5458	5224 5346 5470	5236 5358 5483	I I I I	2 2 2 3 3	4 4 4 4	55555	6 6 6 6 6	7 7 7 8 8	8 9 9	9 10 10 10	I I I I I I
.75 .76 .77 .78 .79	5754 5888 6026	5768 5902 6039	5781. 5916 6053	5662 5794 5929 6067 6209	5808 5943 6081	5957 6095	5702 5834 5970 6109 6252	5984 6124	5998 6138	6012 6152	I I I I	3 3 3 3 3 3	4 4 4 4	55566	7 7 7 7 7	8 8 8 9		II	12 12 13
. 80 .81 .82 .83 .84	6457 6607 6761	6471 6622 6776	6486 6637 6792	6353 6501 6653 6808 6966	6516 6668 6823	6531 6683 6839	6397 6546 6699 6855 7015	6561 6714 6871	6577 6730 6887	6592 6745 6902	[2 2 2 2	3 3 3 3 3 3	4 5 5 5 5	6 6 6 6	8	9 9 9 9	10 11 11 11 11	12 12 13	14 14 14
.85 .86 .87 .88 .89	7244 7413 7586	7261 7430 7603	7278 7447 7621	7129 7295 7464 7638 7816	7311 7482 7656	7328 7499 7674	7178 7345 7516 7691 7 870	7362 7534 7799	7379 75 5 1 7727	7396 7568 7745	2 2 2 2 2 2	3 3 4 4	55555	7 7 7 7 7 7	8 1 8 1 9 1 9 1 9 1	[0 [0 []	12 12 12 12 12	13 14 14	15 16 16
.90 .91 .92 .93 .94	8318 8511	8337 8531	8356 8551	7998 8185 8375 8570 8770	8395 8590	8222 8414 8610	8054 8241 8433 8630 8831	8260 8453 8650	8279 8472 8670	8299 8492 8690	2 2 2	4	6 6 6 6 6	8	91 91 101 101	11 12 12	13 13 14 14 14	15 15 16	17 17 18
.95 .96 .97 .98 .99	9120 9333 9550	9141 9354 9572	9162 9376 9594	8974 9183 9397 9616 9840	9204 9419 9638	9226 9441 9661	9036 9247 9462 9683 9908	9268 9484 9705	9290 9506 9727	9311 9528 9750	2 2 2 2 2 2	4 4 4 5	6 6 7 7 7	8 9 9		13 13 13		17	19 20 20
L.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

NATURAL SINES AND COSINES.

Natural Sines.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1/.
0° 1 2 3 4	.0000 00 .0174 52 .0349 0 .0523 4 .0697 6	.0029 09 .0203 6 .0378 1 .0552 4 .0726 6	.0058 18 .0232 7 .0407 1 .0581 4 .0755 6	.0087 27 .0261 8 .0436 2 .0610 5 .0784 6	.011635 .02908 .04653 .06395 .08136	.014544 .03199 .04943 .06685 .08426	.0174 52 .0349 0 .0523 4 .0697 6 .0871 6	89° 88 87 86 85	2.9 2.9 2.9 2.9 2.9
5 6 7 8 9	.08716 .10453 .12187 .1392 .1564	.0900 5 .1074 2 .1247 6 .1421 .1593	.0929 5 .1103 1 .1276 4 .1449 .1622	.0958 5 .1132 0 .1305 3 .1478 .1650	.0 9 87 4 .1160 9 .1334 .1507 .1679	.1016 4 .11898 .1363 .1536 .1708	.1045 3 .1218 7 .1392 .1564 .1736	84 83 82 81 80	2.9 2.9 2.9 2.9 2.9 2.9
10 11 12 13 14	.1736 .1908 .2079 .2250 .2419	.1765 .1937 .2108 .2278 .2447	. 1 794 .1965 .2136 .2306 .2476	.1822 .1994 .2164 .2334 .2504	.1851 .2022 .2193 .2363 .2532	.1880 .2051 .2221 .2391 .2560	.1908 .2079 .2250 .2419 .2588	79 78 77 76 75	2.9 2.9 2.8 2.8 2.8 2.8
15 16 17 18 19	.2588 .2756 .2924 .3090 .3256	.2616 .2784 .2952 .3118 .3283	.2644 .2812 .2979 .3145 .3311	.2672 .2840 .3007 .3173 .3338	.2700 .2868 .3035 .3201 .3365	.2728 .2896 .3062 .3228 .3393	.27 56 .2924 .3090 .3256 .3420	74 73 72 71 70	2.8 2.8 2.8 2.8 2.8 2.7
20 21 22 23 24	.3420 .3584 .3746 .3907 .4067	.3448 .3611 .3773 .3934 .4094	.347 5 .3638 .3800 .3961 .41 20	.3502 .3665 .3827 .3987 .4147	.3529 .3692 .3854 .4014 .4173	·3557 .3719 .3881 .4041 .4200	•35 ⁸ 4 •3746 •3907 •4067 •4226	69 68 67 66 65	2.7 2.7 2.7 2.7 2.7 2.7
25 26 27 28 29	.4226 .4384 .4540 .4695 .4848	.4253 .4410 .4566 .4720 .4874	.4279 .4436 .4592 .4746 .4899	.4305 .4462 .4617 .4772 .4924	.4331 .4488 .4643 .4797 .4950	.4358 .4514 .4669 .4823 .4975	.4384 .4540 .4695 .4848 .5000	64 63 62 61 60	2.6 2.6 2.6 2.6 2.5
30 31 32 33 34	.5000 .5150 .5299 .5446 .5592	.5025 .5175 .5324 .5471 .5616	.5050 .5200 .5348 .5495 .5640	.5075 .5225 .5373 .5519 .5664	.5100 .5250 .5398 .5544 .5688	.5125 .5275 .5422 .5568 .5712	•51 50 •5299 •5446 •5592 •57 36	59 .58 57 56 55	2.5 2.5 2.5 2.4 2.4
35 36 37 38 39	• 57 36 • 5878 • 6018 • 61 57 • 6293	.5760 .5901 .6041 .6180 .6316	.5783 .5925 .6065 .6202 .6338	.5807 .5948 .6088 .6225 .6361	.5831 .5972 .6111 .6248 .6383	.5854 .5995 .6134 .6271 .6406	.5878 .6018 .6157 .6293 .6428	54 53 52 51 50	2.4 2.3 2.3 2.3 2.3 2.3
40 41 42 43 44	6428 6561 6691 6820 6947	.6450 .6583 .6713 .6841 .6967	.6472 .6604 .6734 .6862 .6988	.6494 .6626 .6756 .6884 .700 9	.6517 .6648 .6777 .6905 .7030	.6539 .6670 .6799 .6926 .7050	.6561 .6691 .6820 .6947 .7071	49 48 47 46 45	2.2 2.2 2.2 2.1 2.1 2.1
	60′	50′	40′	30′	20′	10′	0'	Angle.	

SMITHSONIAN TABLES.

Natural Cosines.

NATURAL SINES AND COSINES.

Natural Sines.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1/.
45°	.7071	.7092	.7112	.7133	.7153	.7173	.7193	44 °	2.0
46	.7193	.7214	.7234	.7254	.7274	.7294	.7314	43	2.0
47	.7314	.7333	.7353	.7373	.7392	.7412	.7431	42	2.0
48	.7431	.7451	.7470	.7490	.7509	.7528	.7547	41	1.9
49	.7547	.7566	.75 ⁸ 5	.7604	.7623	.7642	.7660	40	1.9
50	.7660	.7679	.7698	.7716	•7735	.7753	.7771	39	1.9
51	.7771	.7790	.7808	.7826	•7844	.7862	.7880	3 ⁸	1.8
52	.7880	.7898	.7916	.7934	•7951	.7969	.7986	37	1.8
53	.7986	.8004	.8021	.8039	•8056	.8073	.8090	36	1.7
54	.8090	.8107	.8124	.8141	•8158	.8175	.8192	35	1.7
55 56 57 58 59	.8192 .8290 .8387 .8480 .8572	.8208 .8307 .8403 .8496 .8587	.8225 .8323 .8418 .8511 .8601	.8241 .8339 .8434 .8526 .8616	.8258 .8355 .8450 .8542 .8631	.8274 .8371 .8465 .8557 .8646	.8290 .8387 .8480 .8572 .8660	34 33 3 ² 31 30	1.6 1.6 1.5 1.5
60 61 62 63 64	.8660 .8746 .8829 .8910 .8988	.8675 .8760 .8843 .8923 .9001	.8689 .8774 .8857 .8936 .9013	.8704 .8788 .8870 .8949 .9026	.8718 .8802 .8884 .8962 .9038	.8732 .8816 .8897 .8975 .9051	.8746 .8829 .8910 .8988 .9063	29 28 27 26 25	1.4 1.4 1.3 1.3
65	.9063	.9075	.9088	.9100	.9112	.9124	•9135	24	I.2
66	.9135	.9147	.9159	.9171	.9182	.9194	•9205	23	I.2
67	.9205	.9216	.9228	.9239	.9250	.9261	•9272	22	I.I
68	.9272	.9283	.9293	.9304	.9315	.9325	•9336	21	I.I
69	.9336	.9346	.9356	.9367	.9377	.93 ⁸ 7	•9397	20	I.0
70	.9397	.9407	.9417	.9426	.9436	.9446	•9455	19	1.0
71	.9455	.9465	.9474	.9483	.9492	.9502	.9511	18	0.9
72	.9511	.9520	.9528	.9537	.9546	.9555	.9563	17	0.9
73	.9563	.9572	.9580	.9588	.9596	.9605	.9613	16	0.8
74	.9613	.9621	.9628	.9636	.9644	.9652	.9659	15	0.8
75	.9659	.9667	.9674	.9681	.9689	.9696	.9703	14	0.7
76	.9703	.9710	.9717	.9724	.9730	.9737	.9744	13	0.7
77	.9744	.9750	.9757	.9763	.9769	.9775	.9781	12	0.6
78	.9781	.9787	.9793	.9799	.9805	.9811	.9816	11	0.6
79	.9816	.9822	.9827	.9833	.9838	.9 ⁸ 43	.9848	10	0.5
80	.9848	.9853	.9858	.9863	.9868	.9872	.9 ⁸ 77	9	0.5
81	.9877	.9881	.9886	.9890	.9894	.9899	.9903	8	0.4
82	.9903	.9907	.9911	.9914	.9918	.9922	.9925	7	0.4
83	.9925	.9929	.9932	.9936	.9939	.9942	.9945	6	0.3
84	.9945	.9948	.9951	.9954	.9957	.9959	.9962	5	0.3
85	.9962	.9964	.9967	.9969	.9971	.9974	.9976	4	0.2
86	.9976	.9978	.9980	.9981	.9983	.9985	.9986	3	0.2
87	.9986	.9988	.9989	.9990	.9992	.9993	.9994	2	0.1
88	.9994	.9995	.9996	.9997	.9997	.9998	.9998	1	0.1
89	.9998	.9999	.9999	1.0000	1.0000	1.0000	1.0000	0	0.0
	60′	50 ⁷	40′	30′	20′	10′	0′	Angle.	

SMITHSONIAN TABLES.

Natural Cosines.

29

NATURAL TANGENTS AND COTANCENTS.

Natural Tangents.

Angle.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1'.
0°	.0000 0	.0029 I	.0058 2	.0087 3	.01164	.0145 5	.01746	89 °	2.9
1	.0174 6	.0203 6	.0232 8	.0261 9	.02910	.0320 1	.03492	88	2.9
2	.0349 2	.0378 3	.0407 5	.0436 6	.04658	.0494 9	.05241	87	2.9
3	.0524 1	.0553 3	.0582 4	.0611 6	.06408	.0670 0	.06993	86	2.9
4	.0699 3	.0728 5	.0757 8	.0787 0	.08163	.0845 6	.08749	85	2.9
5	.0874 9	.0904 2	.0933 5	.0962 9	.0992 3	.1021 6	.1051 0	84	2.9
6	.1051 0	.1080 5	.1109 9	.1139 4	.1168 8	.1198 3	.1227 8	83	2.9
7	.1227 8	.1257 4	.1286 9	.1316 5	.1346	.1376	.1405	82	3.0
8	.1405	.1435	.1465	.1495	.1524	.1554	.1584	81	3.0
9	.1584	.1614	.1644	.1673	.1703	.1733	.1763	80	3.0
10	.1763	.1793	.1823	.1853	.1883	.1914	.1944	79	3.0
11	.1944	.1974	.2004	.2035	.2065	.2095	.2126	78	3.0
12	.2126	.2156	.2186	.2217	.2247	.2278	.2309	77	3.1
13	.2309	.2339	.2370	.2401	.2432	.2462	.2493	76	3.1
14	.2493	.2524	.2555	.2586	.2617	.2648	.2679	75	3.1
15	.2679	.2711	.2742	.2773	.2805	.2836	.2867	74	3.1
16	.2867	.2899	.2931	.2962	.2994	.3026	.3057	73	3.2
17	.3057	.3089	.3121	.3153	.3185	.3217	.3249	72	3.2
18	.3249	.3281	.3314	.3346	.3378	.3411	.3443	71	3.2
19	.3443	.3476	.3508	.3541	.3574	.3607	.3640	70	3.3
20	.3640	.3673	.3706	·3739	.3772	.3805	.3839	69	3.3
21	.3839	.3872	.3906	·3939	.3973	.4006	.4040	68	3.4
22	.4040	.4074	.4108	·4142	.4176	.4210	.4245	67	3.4
23	.4245	.4279	.4314	·4348	.4383	.4417	.4452	66	3.5
24	.4452	.4487	.4522	·4557	.4592	.4628	.4663	65	3.5
25 26 27 28 29	.4663 .4877 .5095 .5317 .5543	.4699 .4913 .5132 .5354 .5581	•4734 •4950 •5169 •5392 •5619	.4770 .4986 .5206 .5430 .5658	.4806 .5022 .5243 .5467 .5696	.4841 .5059 .5280 .5505 .5735	.4877 .5095 .5317 .5543 .5774	64 63 62 61 60	3.6 3.6 3.7 3.8 3.8 3.8
30	•5774	.5812	.5851	.5890	.5930	.5969	.6009	59	3.9
31	.6009	.6048	.6088	.6128	.6168	.6208	.6249	58	4.0
32	.6249	.6289	.6330	.6371	.6412	.6453	.6494	57	4.1
33	.6494	.6536	.6577	.6619	.6661	.6703	.6745	56	4.2
34	.6745	.6787	.6830	.6873	.6916	.6959	.7002	55	4.3
35	.7002	.7046	.7089	.7133	.7177	.7221	.7265	54	4·4
36	.7265	.7310	.7355	.7400	-7445	.7490	.7536	53	4·5
37	.7536	.7581	.7627	.7673	.7720	.7766	.7813	52	4.6
38	.7813	.7860	.7907	.7954	.8002	.8050	.8098	51	4·7
39	.8098	.8146	.8195	.8243	.8292	.8342	.8391	50	4·9
40	.8391	.8441	.8491	.8541	.8591	.8642	.8693	49	5.0
41	.8693	.8744	.8796	.8847	.8899	.8952	.9004	48	5.2
42	.9004	.9057	.9110	.9163	.9217	.9271	.9325	47	5.4
43	.9325	.9380	.9435	.9490	.9545	.9601	.9657	46	5.5
44	.9657	.9713	.9770	.9827	.9884	.9942	1.0000	45	5.7
	60′	50′	40′	30′	20′	10′	0′	Angle.	

SMITHSONIAN TABLES.

Natural Cotangents.

NATURAL TANCENTS AND COTANCENTS.

Natural Tangents.

Angls.	0′	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1'.
45°	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295	1.0355	44 °	5.9
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.0661	1.0724	43	6.1
47	1.0724	1.0786	1.0850	1.0913	1.0977	1.1041	1.1106	42	6.4
48	1.1106	1.1171	1.1237	1.1303	1.1369	1.1436	1.1504	41	6.6
49	1.1504	1.1571	1.1640	1.1708	1.1778	1.1847	1.1918	40	• 6.9
50	1.1918	1.1988	1.2059	1.2131	1.2203	1.2276	1.2349	39	7.2
51	1.2349	1.2423	1.2497	1.2572	1.2647	1.2723	1.2799	38	7.5
52	1.2799	1.2876	1.2954	1.3032	1.3111	1.3190	1.3270	37	7.9
53	1.3270	1.3351	1.3432	1.3514	1.3597	1.3680	1.3764	36	8.2
54	1.3764	1.3848	1.3934	1.4019	1.4106	1.4193	1.4281	35	8.6
55	1.4281	1.4370	1.4460	1.4550	1.4641	1.4733	1.4826	34	9.1
56	1.4826	1.4919	1.5013	1.5108	1.5204	1.5301	1.5399	33	9.6
57	1.5399	1.5497	1.5597	1.5697	1.5798	1.5900	1.6003	32	10.1
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534	1.6643	31	10.7
59	1.6643	1.6753	1.6864	1.6977	1.7090	1.7205	1.7321	30	11.3
60	1.7321	1.7437	1.7556	1.7675	1.7796	1.7917	1.8040	29	12.0
61	1.8040	1.8165	1.8291	1.8418	1.8546	1.8676	1.8807	28	12.8
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486	1.9626	27	13.6
63	1.9626	1.9768	1.9912	2.0057	2.0204	2.0353	2.0503	26	14.6
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25	15.7
65	2.1445	2.1609	2.1775	2.1943	2.2113	2.2286	2.2460	24	16.9
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369	2.3559	23	18.3
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545	2.4751	22	19.9
68	2.4751	2.4960	2.5172	2.5386	2.5605	2.5826	2.6051	21	21.7
69	2.6051	2.6279	2.6511	2.6746	2.6985	2.7228	2.7475	20	23.7
70	2.7475	2.7725	2.7980	2.8239	2.8502	2.8770	2.9042	19	
71	2.9042	2.9319	2.9600	2.9887	3.0178	3.0475	3.0777	18	
72	3.0777	3.1084	3.1397	3.1716	3.2041	3.2371	3.2709	17	
73	3.2709	3.3052	3.3402	3.3759	3.4124	3.4495	3.4874	16	
74	3.4874	3.5261	3.5656	3.6059	3.6470	3.6891	3.7321	15	
75	3.7321	3.7760	3.8208	3.8667	3.91 36	3.9617	4.0108	14	
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747	4.3315	13	
77	4.3315	4.3897	4.4494	4.5107	4.57 36	4.6382	4.7046	12	
78	4.7046	4.7729	4.8430	4.9152	4.9894	5.0658	5.1446	11	
79	5.1446	5.2257	5.3093	5.3955	5.4845	5.5764	5.6713	10	
80	5.6713	5.7694	5.8708	5.9758	6.0844	6.1970	6.3138	9	
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682	7.1154	8	
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530	8.1443	7	
83	8.1443	8.3450	8.5555	8.7769	9.0098	9.2553	9.5144	6	
84	9.5144	9.7882	10.0780	10.3854	10.7119	11.0594	11.4301	5	
85 86 87 88 89	11.4301 14.3007 19.0811 28.636 3 57.2900	11.8262 14.9244 20.2056 31.2416 68.7501	12.2505 15.6048 21.4704 34.3678 85.9398	22.9038 38.1885	1 3.1969 17.1693 24.5418 42.9641 171.8854	1 3.7 267 18.07 50 26.4316 49.1039 343.77 37	14.3007 19.0811 28.6363 57.2900 20	4 3 2 1 0	
	60′	50′	4 0′	30′	20′	10′	0′	Angle.	

SMITHSONIAN TABLES.

Natural Cotangents.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.

Minutes.	Distance.	0	po	3	o	2	0	Distance.	Minutes.
Mir	Dis	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dis	Mir
o	1 2 3 4 5 6 7 8 9	1.00000 2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.99984 1.99969 2.99954 3.99939 4.99923 5.99908 6.99893 7.99878 8.99862	0.01745 0.03490 0.05235 0.06980 0.08726 0.10471 0.12216 0.13961 0.15707	0.99939 1.99878 2.99817 3.99756 4.99695 5.99634 6.99573 7.99512 8.99451	0.03490 0.06980 0.10470 0.13960 0.17450 0.20940 0.24430 0.27920 0.31410	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.999999 1.99998 2.99997 3.99995 4.99995 5.99994 6.99993 7.99992 8.99991	0.00436 0.00872 0.01308 0.01745 0.02181 0.02617 0.03054 0.03490 0.03926	0.99976 1.99952 2.99928 3.99994 4.99881 5.69857 6.99833 7.99809 8.99785	0.02181 0.04363 0.06544 0.08725 0.10907 0.13089 0.15270 0.17452 0.19633	0.99922 1.99845 2.99768 3.99691 4.99614 5.99537 6.99460 7.99383 8.99306	0.03925 0.07851 0.11777 0.15703 0.19629 0.23555 0.27481 0.31407 0.35333	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 7 8 9	0.99996 1.99992 2.99988 3.99984 4.99981 5.99977 6.99973 7.99969 8.99965	0.00872 0.01745 0.02617 0.03490 0.04363 0.05235 0.06108 0.06981 0.07853	0.99965 1.99931 2.99897 3.99862 4.99828 5.99794 6.99760 7.99725 8.99691	0.02617 0.05235 0.07853 0.10470 0.13088 0.15706 0.18323 0.20941 0.23559	0.99904 1.99809 2.99714 3.99619 4.99524 5.99428 6.99333 7.99238 8.99143	0.04361 0.08723 0.13085 0.17447 0.21809 0.26171 0.30533 0.34895 0.39257	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.99991 1.99982 2.99974 3.99955 4.99957 5.99948 6.99940 7.99931 8.99922	0.01308 0.02617 0.03926 0.05235 0.06544 0.07853 0.09162 0.10471 0.11780	0.99953 1.99006 2.99860 3.99813 4.99766 5.99720 6.99673 7.99626 8.99580	0.03053 0.06107 0.09161 0.12215 0.15269 0.18323 0.21376 0.224430 0.27484	0.99884 1.99769 2.99654 3.99539 4.99424 5.99309 6.99193 7.99078 8.98963	0.04797 0.09595 0.14393 0.19191 0.23989 0.28786 0.33584 0.38382 0.43180	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
es.	ıce.	8	9 °	8	B°	8	7°	nce.	tes.

SMITHSONIAN TABLES.

32

TABLE 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

Minutes.	Distance.	3	0	4	0	5	jo _	Distance.	Minutes.
Min	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Min
o	1 2 3 4 5 6 7 8 9	0.99863 1.99726 2.99589 3.99452 4.99315 5.99178 6.99041 7.98904 8.98767	0.05233 0.10467 0.15700 0.20934 0.26168 0.31401 0.36635 0.41868 0.47102	0.99756 1.99512 2.99269 3.99025 4.98782 5.98538 6.98294 7.98051 8.97807	0.06975 0.13951 0.20926 0.27902 0.34878 0.41853 0.48829 0.55805 0.62780	0.99619 1.90238 2.98858 3.98477 4.98097 5.97716 6.97336 7.96955 8.96575	0.08715 0.17431 0.26146 0.34862 0.43577 0.52293 0.61008 0.69724 0.78440	1 2 3 4 5 6 7 8 9	бо
15	1 2 3 4 5 6 7 8 9	0.99839 1.99678 2.99517 3.99356 4.99195 5.99035 6.98874 7.98713 8.98552	0.05669 0.11338 0.17007 0.22677 0.28346 0.34015 0.39684 0.45354 0.51023	0.99725 1.99450 2.99175 3.98900 4.98625 5.98350 6.98075 7.97800 8.97525	0.07410 0.14821 0.22232 0.29643 0.37054 0.44465 0.51875 0.59286 0.66697	0.99580 1.99160 2.98741 3.98321 4.97902 5.97482 6.97063 7.96643 8.96224	0.091 50 0.18 300 0.274 50 0.36600 0.457 50 0.54900 0.64051 0.73201 0.82351	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.99813 1.99626 2.99440 3.99253 4.99067 5.98880 6.98694 7.98507 8.98321	0.06104 0.12209 0.18314 0.24419 0.30524 0.36629 0.42733 0.48838 0.54943	0.99691 1.99383 2.99075 3.98766 4.98458 5.98150 6.97842 7.97533 8.97225	0.07845 0.15691 0.23537 0.31383 0.39229 0.47075 0.54921 0.62767 0.70613	0.99539 1.99079 2.98618 3.98158 4.97698 5.97237 6.96777 7.96316 8.95856	0.09584 0.19169 0.28753 0.38338 0.47922 0.57507 0.67092 0.76676 0.86261	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.99785 1.99571 2.99357 3.99143 4.98929 5.98715 6.98501 7.98287 8.98073	0.06540 0.13080 0.26161 0.32701 0.39241 0.45782 0.52322 0.58862	0.99656 1.99313 2.98969 3.98626 4.98282 5.97939 6.97595 7.97252 8.96908	0.08280 0.16561 0.24842 0.33123 0.41404 0.49684 0.57965 0.66246 0.74527	0.99496 1.98993 2.98490 3.97987 4.97484 5.96981 6.96477 7.95974 8.95471	0.10018 0.20037 0.30056 0.40075 0.50094 0.60112 0.70131 0.80150 0.90169	1 2 3 4 5 6 7 8 9	15
Minutes	Distance.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
ites.	ınce.	8	6°	8	5°	8	4 °	unce.	tes.

SMITHSONIAN TABLES.

33

TABLE 9.

9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-Continued.

tes.	nce.	6	0	7	o	8	•	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.99452 1.98904 2.98356 3.97808 4.97261 5.96713 6.96165 7.95617 8.95069	0.10452 0.20905 0.31358 0.41811 0.52264 0.62717 0.73169 0.83622 0.94075	0.99254 1.98509 2.97763 3.97018 4.96273 5.95519 6.94782 7.94038 8.93291	0.12186 0.24373 0.36560 0.48777 0.60934 0.73121 0.85308 0.97495 1.09682	0.99026 1.98053 2.97080 3.96107 4.95134 5.94160 6.93187 7.92214 8.91241	0.13917 0.27834 0.41751 0.55669 0.69586 0.83503 0.97421 1.11338 1.25255	1 2 3 4 5 0 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.99405 1.98811 2.98216 3.97622 4.97028 5.96433 6.95839 7.95245 8.94650	0.10886 0.21773 0.32660 0.43546 0.54433 0.65320 0.76206 0.87093 0.97980	0.99200 1.98400 2.97601 3.96801 4.96002 5.95202 6.94403 7.93603 8.92804	0.12619 0.25239 0.37859 0.50479 0.63099 0.75719 0.88339 1.00959 1.13579	0.98965 1.97930 2.96895 3.95860 4.94825 5.93790 6.92755 7.91721 8.90686	0.14349 0.28698 0.43047 0.57397 0.71746 0.86095 1.00444 1.14794 1.29143	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.99357 1.98714 2.98071 3.97428 4.96786 5.96143 6.95500 7.94857 8.94214	0.11320 0.22640 0.33960 0.45281 0.56601 0.67921 0.79242 0.90562 1.01882	0.99144 1.98288 2.97433 3.96577 4.95722 5.94866 6.94011 7.93155 8.92300	0.13052 0.20105 0.39157 0.52210 0.65263 0.78315 0.91368 1.04420 1.17473	0.98901 1.97803 2.96704 3.95606 4.94508 5.93409 6.92311 7.91212 8.90114	0.14780 0.29561 0.44342 0.59123 0.73904 0.88685 1.03466 1.18247 1.33028	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.99306 1.98613 2.97920 3.97227 4.96534 5.95841 6.95147 7.94454 8.93761	0.11753 0.23507 0.35261 0.47014 0.58768 0.70522 0.82276 0.94029 1.05783	0.99086 1.98173 2.97259 3.96346 4.95432 5.94519 6.93606 7.92692 8.91779	0.13485 0.26970 0.40455 0.53940 0.67425 0.80910 0.94395 1.07880 1.21365	0.98836 1.97672 2.96508 3.95344 4.94180 5.93016 6.91853 7.90689 8.89525	0.15212 0.30424 0.45637 0.66849 0.76061 0.91274 1.06486 1.21698 1.36911	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
ş	ice.	8	3°	8	2 °	8	L°	ice.	ës.

SMITHSONIAN TABLES.

34

•

TRAVERSE TABLE. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. - CONTINUED.

ites.	Distance.	9	o	10	a	11	0	Distance.	Minutes.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Min
0	1 2 3 4 5 6 7 8 9	0.98768 1.97537 2.96306 3.95075 4.93844 5.92612 6.91381 7.90150 8.88919	0.15643 0.31286 0.46930 0.62573 0.78217 0.93860 1.09504 1.25147 1.40791	0.98480 1.96961 2.95442 3.93923 4.92403 5.90884 6.89365 7.87846 8.86327	0.17 364 0.347 29 0.52094 0.694 59 0.868 24 1.041 88 1.21 553 1.389 18 1.562 83	0.98162 1.96325 2.94488 3.92650 4.90813 5.88976 6.87139 7.85301 8.83464	0.19081 0.38162 0.57243 0.76324 0.95405 1.14486 1.33566 1.52648 1.71729	1 ² ³ ⁴ ⁵⁶ ⁷⁸ 9	60
15	1 2 3 4 5 6 7 8 9	0.98699 1.97399 2.96098 3.94798 4.93498 5.92197 6.90897 7.89597 8.88296	0.16074 0.32148 0.48222 0.64297 0.80371 0.96445 1.12519 1.28594 1.44668	0.98404 1.96808 2.95212 3.93616 4.92020 5.90424 6.88828 7.87232 8.85636	0.17794 0.35588 0.53383 0.71177 0.88971 1.06766 1.24560 1.42354 1.60149	0.98078 1.961 57 2.94235 3.92314 4.90392 5.88471 6.86549 7.84628 8.82706	0.19509 0.39018 0.58527 0.78036 0.97545 1.17054 1.36563 1.56072 1.75581	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 7 8 9	0.98628 1.97257 2.95885 3.94514 4.93142 5.91771 6.90399 7.89028 8.87657	0.16504 0.33009 0.49514 0.66019 0.82523 0.99028 1.15533 1.32038 1.48542	0.98325 1.96650 2.94976 3.93301 4.91627 5.89952 6.88278 7.86603 8.84929	0.18223 0.36447 0.54670 0.72894 0.91117 1.09341 1.27564 1.45788 1.64011	0.97992 1.95984 2.93977 3.91969 4.89962 5.87954 6.85947 7.83939 8.81932	o.19936 o.39873 o.59810 o.79747 o.99683 1.19620 1.39557 1.59494 1.79431	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.98 555 1.97111 2.95666 3.94222 4.92778 5.91333 6.89889 7.88444 8.87000	0.16935 0.33870 0.50805 0.67740 0.84675 1.01610 1.18545 1.35480 1.52415	0.98245 1.96490 2.94735 3.92980 4.91225 5.89470 6.87715 7.85960 8.84205	0.18652 0.37304 0.55957 0.74609 0.93262 1.11914 1.30566 1.49219 1.67871	0.97904 1.95809 2.93713 3.91618 4.89522 5.87427 6.85331 7.83236 8.81140	0.20364 0.40728 0.61092 0.81456 1.01820 1.22185 1.42549 1.62913 1.83277	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
tes.	nce.	8	10 °	7	'9°	7	′8°	ice.	es.

SMITHSONIAN TABLES.

35

,

TABLE 9.

.

DIFFERENCES OF LATITUDE AND DEPARTURE. - CONTINUED.

ŝ	ice.	1:	2 °	1;	3 °	14	1 °	nce.	tes,
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes,
o	1 2 3 4 5 6 7 8 9	0.97814 1.95629 2.93444 3.91259 4.89073 5.86888 6.84703 7.82518 8.80332	0.2079I 0.41582 0.62373 0.83164 1.03955 1.24747 1.45538 1.66329 1.87120	0.97437 1.94874 2.92311 3.89748 4.87185 5.84622 6.82059 7.79496 8.76933	0.22495 0.44990 0.67485 0.89980 1.12475 1.34970 1.57465 1.79960 2.02455	0.97029 1.94059 2.91088 3.88118 4.85147 5.82177 6.79206 7.76236 8.73266	0.24192 0.48384 0.72576 0.96768 1.20961 1.45153 1.69345 1.93537 2.17729	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.97723 1.95446 2.93169 3.90892 4.88615 5.86338 6.84061 7.81784 8.79507	0.21217 0.42435 0.63653 0.84871 1.06088 1.27306 1.48524 1.69742 1.90959	0.97337 1.94675 2.92013 3.89351 4.86689 5.84027 6.81365 7.78703 8.76041	0.22920 0.45840 0.68760 0.91680 1.14600 1.37520 1.60440 1.83360 2.06280	0.96923 1.93846 2.90769 3.87692 4.84615 5.81538 6.78461 7.75384 8.72307	0.24615 0.49230 0.73845 0.98461 1.23076 1.47691 1.72307 1.96922 2.21537	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.97629 1.95259 2.92888 3.90518 4.88148 5.85777 6.83407 7.81036 8.78666	0.21644 0.43288 0.64932 0.86576 1.08220 1.29864 1.51508 1.73152 1.94796	0.97237 1.94474 2.91711 3.88948 4.86185 5.83422 6.80659 7.77896 8.75133	0.23344 0.4689 0.70033 0.93378 1.16722 1.40067 1.63411 1.86756 2.10100	0.96814 1.93629 2.90444 3.87259 4.84073 5.80888 6.77703 7.74518 8.71332	0.25038 0.50076 0.75114 1.00152 1.25190 1.50228 1.7526 2.00304 2.25342	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.97 534 1.95068 2.92602 3.90136 4.87671 5.85205 6.82739 7.80273 8.77808	0.22069 0.44139 0.66209 0.88278 1.10348 1.32418 1.54488 1.76557 1.98627	0.97134 1.94268 2.91402 3.88536 4.85671 5.82805 6.79939 7.77073 8.74207	0.23768 0.47537 0.71305 0.95074 1.18843 1.42611 1.66380 1.90148 2.13917	0.96704 1.03409 2.90113 3.86818 4.83523 5.80227 6.76932 7.73636 8.70341	0.25460 0.50920 0.76380 1.01840 1.27301 1.52761 1.78221 2.03681 2.29141	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
<u></u>	e.	7	7 °	7	6°	7	5°		ŝ

SMITHSONIAN TABLES.

36

.

TRAVERSE TABLE. TABLE 9. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

ites.	ince.	1	5°	1	6 °	1	7 °	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.96592 1.93185 2.89777 3.86370 4.82962 5.79555 6.76148 7.72740 8.69333	o.25881 o.51763 o.77645 1.03527 1.29409 1.55291 1.81173 2.07055 2.32937	0.96126 1.92252 2.88378 3.84504 4.80630 5.76757 6.72883 7.69009 8.65135	0.27 563 0.55127 0.82691 1.10254 1.37818 1.65382 1.92946 2.20509 2.48073	0.95630 1.91260 2.86891 3.82521 4.78152 5.73782 6.69413 7.65043 8.60674	0.29237 0.58474 0.87711 1.16948 1.46185 1.75423 2.04660 2.33897 2.63134	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.96478 1.92957 2.89436 3.85914 4.82393 5.78872 6.75351 7.71829 8.68308	0.26303 0.52606 0.78909 1.05212 1.31515 1.57818 1.84121 2.10424 2.36728	0.96005 1.92010 2.88015 3.84020 4.80025 5.76030 6.72035 7.68040 8.64045	0.27982 0.55965 0.83948 1.11931 1.39914 1.67897 1.95880 2.23863 2.51846	0.95502 1.91004 2.86506 3.82008 4.77510 5.73012 6.68514 7.64016 8.59518	0.29654 0.59308 0.88962 1.18616 1.48270 1.77924 2.07579 2.37233 2.66887	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 56 78 9	0.96363 1.92726 2.89089 3.85452 4.81815 5.78178 6.74541 7.70904 8.67267	0.26723 0.53447 0.80171 1.06895 1.33619 1.60343 1.87066 2.13790 2.40514	0.95882 1.91764 2.87646 3.83528 4.79410 5.75292 6.71174 7.67056 8.62938	0.28401 0.56803 0.85204 1.13606 1.42007 1.70409 1.98810 2.27212 2.55613	0.95371 1.90743 2.86115 3.81486 4.76858 5.72230 0.67601 7.62973 8.58345	0.30070 0.60141 0.90211 1.20282 1.50352 1.80423 2.10494 2.40564 2.70635	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.96245 1.92491 2.88736 3.84982 4.81227 5.77473 6.73718 7.69964 8.66209	0.27144 0.54288 0.81432 1.08576 1.35720 1.62864 1.90008 2.17152 2.44296	0.95757 1.91514 2.87271 3.83028 4.78785 5.74542 6.70299 7.66057 8.61814	0.28819 0.57639 0.86458 1.15278 1.44098 1.72917 2.30577 2.30557 2.59376	0.95239 1.90479 2.85718 3.80958 4.76197 5.71437 6.66677 7.61916 8.57156	0.30486 0.60972 0.91459 1.21945 1.52432 1.82918 2.13405 2.43891 2.74377	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. 7 4	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes.
		ר/ 	·]						•

SMITHSONIAN TABLES.

1

37

TABLE 9.

DIFFERENCES OF LATITUDE AND DEPARTURE. - CONTINUED.

tes.	nce.	18	30	19	9°	20)°	nce.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.95105 1.90211 2.85316 3.80422 4.75528 5.70633 6.65739 7.60845 8.55950	0.30901 0.61803 0.92705 1.23606 1.54508 1.85410 2.16311 2.47213 2.78115	0.94551 1.89103 2.83655 3.78207 4.72759 5.67311 6.61863 7.56414 8.50966	0.32556 0.65113 0.97670 1.30227 1.02784 1.95340 2.27897 2.60454 2.93011	0.93969 1.87938 2.81907 3.75 ⁸ 77 4.69846 5.63815 6.57784 7.51754 8.45723	0.34202 0.68404 1.02606 1.36808 1.71010 2.05212 2.39414 2.73616 3.07818	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.94969 1.89939 2.84909 3.79879 4.74849 5.69819 6.64789 7.59759 8.54729	0.31316 0.62632 0.93949 1.25265 1.56581 1.87898 2.19214 2.50531 2.81847	0.94408 1.88817 2.83226 3.77635 4.72044 5.66453 6.60862 7.55271 8.49680	0.32969 0.65938 0.98907 1.31876 1.64845 1.97814 2.30783 2.63752 2.96721	0.93819 1.87638 2.81457 3.75276 4.69095 5.62914 6.50733 7.50553 8.44372	0.34611 0.69223 1.03835 1.38446 1.73058 2.07670 2.44281 2.76893 3.11505	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.94832 1.89664 2.84497 3.79329 4.74161 5.68994 6.63826 7.58658 8.53491	0.31730 0.03460 0.95191 1.26921 1.58652 1.90382 2.22113 2.53843 2.85574	0.94264 1.88528 2.82792 3.77056 4.71320 5.65584 6.59849 7.54113 8.48377	0.33380 0.66761 1.00142 1.33522 1.66903 2.00284 2.33664 2.33664 2.67045 3.00426	0.93667 1.87334 2.81001 3.74668 4.68336 5.62003 6.55670 7.49337 8.43004	0.35020 0.70041 1.05062 1.40082 1.75103 2.10124 2.45145 2.80165 3.15186	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.94693 1.89386 2.84079 3.78772 4.73465 5.68158 6.62851 7.57544 8.52237	0.32143 0.64287 0.96431 1.28575 1.60719 1.92863 2.25007 2.57151 2.89295	0.94117 1.88235 2.82352 3.76470 4.70588 5.64705 6.58823 7.52940 8.47058	0.33791 0.67583 1.01375 1.35166 1.68958 2.02750 2.36541 2.70333 3.04125	0.93513 1.87027 2.80540 3.74054 4.67567 5.61081 6.54594 7.48108 8.41621	0.35429 0.70858 1.06287 1.41716 1.77145 2.12574 2.48003 2.83432 3.18861	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
cs.	ICe.	7	1 °	7	0 °	6	9 °	lõe.	es.

SMITHSONIAN TABLES.

38

塘

TRAVERSE TABLE.

ites.	Distance.	21	Lo	2:	2 °	23	3 °	ance.	ites.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.93358 1.86716 2.80074 3.73432 4.66790 5.60148 6.53506 7.46864 8.40222	0.35836 0.71673 1.07510 1.43347 1.79183 2.15020 2.50857 2.86694 3.22531	0.92718 1.85436 2.78155 3.70873 4.63591 5.56310 6.49028 7.41747 8.34465	0.37460 0.74921 1.12381 1.49842 1.87303 2.24763 2.62224 2.99685 3.37145	0.92050 1.84100 2.76151 3.68201 4.60252 5.52302 6.44353 7.36403 8.28454	0.39073 0.78146 1.17219 1.56292 1.95365 2.34438 2.73511 3.12584 3.51657	1 2 3 4 5 6 7 8 9	бо
15	1 2 3 4 56 78 9	0.03200 1.86401 2.79602 3.72803 4.66004 5.59204 6.52405 7.45606 8.38807	0.36243 0.72487 1.08731 1.44975 1.81219 2.17462 2.53706 2.89950 3.26194	0.92554 1.85108 2.77662 3.70216 4.62770 5.55324 6.47878 7.40432 8.32986	0.37864 0.75729 1.13594 1.51459 1.89324 2.27189 2.65054 3.02918 3.40783	0.91879 1.83758 2.75637 3.67516 4.59395 5.51274 6.43153 7.35032 8.26912	0.39474 0.78948 1.18423 1.57897 1.97372 2.36846 2.76320 3.15795 3.55269	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 500 7 8 9	0.93041 1.86083 2.79125 3.72167 4.65208 5.58250 6.51292 7.44334 8.37375	0.36650 0.73300 1.09950 1.46600 1.83250 2.19900 2.56550 2.93200 3.29851	0.92388 1.84776 2.77164 3.69552 4.61940 5.54328 6.46716 7.39104 8.31492	0.38268 0.76536 1.14805 1.53073 1.91341 2.29610 2.67878 3.06146 3.44415	0.91706 1.83412 2.75118 3.66824 4.58530 5.50236 6.41942 7.33648 8.25354	0.39874 0.79749 1.19624 1.59499 1.99374 2.39249 2.79124 3.18999 3.5 ⁸⁸ 74	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 0 7 8 9	0.92881 1.85762 2.78643 3.71524 4.64405 5.57286 6.50167 7.43048 8.35929	0.37055 0.74111 1.11167 1.48222 1.85278 2.22334 2.59390 2.96445 3.33501	0.92220 1.84440 2.76660 3.68880 4.61100 5.53320 6.45540 7.37760 8.29980	0.38671 0.77342 1.16013 1.54684 1.93355 2.32026 2.70697 3.09368 3.48039	0.91531 1.83062 2.74593 3.66124 4.57655 5.49186 6.40718 7.32249 8.23780	0.40274 0.80549 1.20824 1.61098 2.01373 2.41648 2.81922 3.22197 3.62472	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce	6	8 °	6	7 °	6	6°	ıce.	ŝ

SMITHSONIAN TABLES.

39

TABLE 9.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	24	o	25	o	26	o	ince.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.91354 1.82709 2.74063 3.65418 4.56772 5.48127 6.39481 7.30836 8.22190	0.40673 0.81347 1.22020 1.62694 2.03368 2.44041 2.84715 3.25389 3.66062	0.90630 1.81261 2.71892 3.62523 4.53153 5.43784 6.34415 7.25046 8.15677	0.42261 0.84523 1.26785 1.69047 2.11309 2.53570 2.95832 3.38094 3.80356	0.89879 1.79758 2.69638 3.59517 4.49397 5.39276 6.29155 7.19035 8.08914	0.43837 0.87674 1.31511 1.75348 2.63022 3.06859 3.50696 3.94533	1 2 3 4 5 6 7 8 9	бо
15	1 2 3 4 5 6 7 8 9	0.91176 1.82352 2.73528 3.64704 4.55881 5.47057 6.38233 7.29409 8.20585	0.41071 0.82143 1.23215 1.64287 2.05359 2.46431 2.87503 3.28575 3.69647	0.90445 1.80891 2.71336 3.61782 4.52227 5.42673 6.33118 7.23564 8.14009	0.42656 0.85313 1.27970 1.70627 2.13284 2.55941 2.98598 3.41254 3.83911	0.89687 1.79374 2.69061 3.58749 4.48436 5.38123 6.27810 7.17498 8.07185	0.44228 0.88457 1.32686 1.76915 2.21144 2.65373 3.09602 3.53830 3.98059	1 2 3 4 56 78 9	45
30	1 2 3 4 5 6 7 8 9	0.90996 1.81992 2.72988 3.63984 4.54980 5.45976 6.36972 7.27969 8.18965	0.41469 0.82938 1.24407 1.65877 2.07346 2.48815 2.90285 3.31754 3.73223	0.90258 1.80517 2.70775 3.61034 4.51292 5.41551 6.31809 7.22068 8.12326	0.43051 0.86102 1.29153 1.72204 2.15255 2.58306 3.01357 3.44408 3.87459	0.80493 1.78986 2.68480 3.57973 4.47467 5.36960 6.26454 7.15947 8.05440	0.44619 0.89239 1.3859 2.23098 2.67718 3.12338 3.56958 4.01578	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.90814 1.81628 2.72442 3.63257 4.54071 5.44885 6.35700 7.26514 8.17328	0.41866 0.83732 1.25598 1.67464 2.09330 2.51196 2.93062 3.34928 3.76794	0.90069 1.80139 2.70209 3.60279 4.50349 5.40418 6.30488 7.20558 8.10628	0.43444 0.86889 1.30333 1.73778 2.17222 2.60667 3.04111 3.47556 3.91000	0.89297 1.78595 2.67893 3.57191 4.46489 5.35787 6.25085 7.14383 8.03681	0.45009 0.90019 1.35029 1.80039 2.25049 2.70059 3.15068 3.60078 4.05088	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes.
<u> </u>		6	i5°	6	4 °	6	3°	, i	, <u>"</u>

SMITHSONIAN TABLES.

40

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	27	7°	28	3°	29	9 °	unce.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.89100 1.78201 2.67301 3.56402 4.45503 5.34603 6.23704 7.12805 8.01905	0.45399 0.90798 1.36197 1.81596 2.26995 2.72394 3.17793 3.63193 4.08591	0.88294 1.76589 2.64884 3.53179 4.41473 5.29768 6.18063 7.06358 7.94652	0.46947 0.93894 1.40841 1.87788 2.34735 2.81682 3.28630 3.75577 4.22524	0.87462 1.74924 2.62386 3.49848 4.37310 5.24772 6.12234 6.9969(i 7.87156	0.48481 0.96962 1.45443 1.93924 2.42405 2.90886 3.39367 3.87848 4.36329	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.88901 1.77803 2.66705 3.55606 4.44508 5.33410 6.22311 7.11213 8.00115	0.45787 0.91574 1.37362 1.83149 2.28937 2.74724 3.20511 3.66299 4.12086	0.88089 1.76178 2.64267 3.52356 4.40445 5.28534 6.16623 7.04712 7.92801	0.47332 0.94664 1.41996 1.89328 2.36660 2.83992 3.31324 3.78656 4.25988	0.87249 1.74499 2.61748 3.48998 4.36248 5.23497 6.10747 6.97996 7.85246	0.48862 0.97724 1.46566 1.05448 2.44310 2.93172 3.42034 3.90896 4.39759	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.88701 1.77402 2.66103 3.54804 4.43505 5.32206 6.20907 7.09608 7.98309	0.46174 0.92349 1.38524 1.84699 2.30874 2.77049 3.23224 3.69398 4.15573	0.87881 1.75763 2.63645 3.51526 4.39408 5.27290 6.15171 7.03053 7.90935	0.47715 0.95431 1.43147 1.90863 2.38579 2.86295 3.34011 3.81727 4.29442	0.87035 1.74071 2.61106 3.48142 4.35177 5.22213 6.09248 6.96284 7.83320	0.49242 0.98484 1.47727 1.96969 2.46211 2.95454 3.44696 3.93938 4.43181	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.88498 1.76997 2.65496 3.53995 4.42493 5.30992 6.19491 7.07990 7.96488	0.46561 0.93122 1.39684 1.86245 2.32807 2.79368 3.25930 3.72491 4.19053	0.87672 1.75345 2.63018 3.50690 4.38363 5.26036 6.13708 7.01381 7.89054	0.48098 0.96197 1.44296 1.92395 2.40494 2.88593 3.36692 3.84791 4.32889	0.86819 1.73639 2.60459 3.47279 4.34099 5.20919 6.07739 6.94559 7.81378	0.49621 0.99243 1.48864 2.48108 2.48108 2.97729 3.47351 3.96973 4.46594	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
tes.	nce.	6	2 °	6	1°	6	:0°	ICe.	s.

9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. - CONTINUED.

es.	e	3	0 °	3	1°	3	2 °	ice.	cs.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.86602 1.73205 2.59807 3.46410 4.33012 5.19615 6.06217 6.92820 7.79422	0.50000 1.00000 2.00000 2.50000 3.50000 3.50000 4.00000 4.50000	0.85716 1.71433 2.57150 3.42866 4.28583 5.14300 6.00017 6.85733 7.71450	0.51503 1.03007 1.54511 2.06015 2.57519 3:09022 3.60526 4.12030 4.63534	0.84804 1.69609 2.54414 3.39219 4.24024 5.08828 5.93633 6.78438 7.63243	0.52991 1.05983 1.58975 2.11967 2.64959 3.17951 3.70943 4.23935 4.76927	1 2 3 4 5 6 7 8 9	бо
15	1 2 3 4 5 0 7 8 9	0.86383 1.72767 2.59150 3.45534 4.31917 5.18301 6.04684 6.91068 7.77451	0.50377 1.00754 1.51132 2.01509 2.51887 3.02264 3.52641 4.03019 4.53396	0.85491 1.70982 2.56473 3.41964 4.27456 5.12947 5.08438 6.83929 7.69420	0.51877 1.03754 1.55631 2.07509 2.59386 3.11263 3.63141 4.15018 4.66895	0.84572 1.69145 2.53718 3.38291 4.22863 5.07436 5.02009 6.76582 7.61155	0.53361 1.06722 1.60084 2.13445 2.66807 3.20168 3.73530 4.26891 4.80253	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.86162 1.72325 2.58488 3.44651 4.30814 5.16977 6.03140 6.89303 7.75466	0.50753 1.01507 1.52261 2.03015 2.53769 3.04523 3.55276 4.06030 4.56784	0.85264 1.70528 2.55792 3.41056 4.26320 5.11584 5.96948 6.82112 7.67376	0.52249 1.04499 1.56749 2.08999 2.61249 3.13499 3.65749 4.17998 4.70248	0.84339 1.68678 2.53017 3.37356 4.21695 5.06034 5.90373 6.74713 7.59052	0.53730 1.07460 1.61190 2.14920 2.68650 3.22380 3.76110 4.29840 4.83570	1 2 34 56 78 9	30
45	1 2 3 4 5 6 7 8 9	0.85940 1.71881 2.57821 3.43762 4.29703 5.15643 6.01584 6.87525 7.73465	0.51129 1.02258 1.53387 2.04517 2.55646 3.06775 3.57905 4.09034 4.60163	0.85035 1.70070 2.55105 3.40140 4.25176 5.10211 5.95246 6.80281 7.65316	0.52621 1.05242 1.57864 2.10485 2.63107 3.15728 3.68349 4.20971 4.73592	0.84103 1.68207 2.52311 3.36415 4.20519 5.04623 5.88827 6.72831 7.56935	0.54097 1.08194 1.62292 2.16389 2.70487 3.24584 3.78682 4.32779 4.86877	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes.
ŝ	ICe,	59	0	58	3 °	5	7 °	nce.	tes.

TRAVERSE TABLE. TABLE DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	ence.	3:	3 °	34	P o	3!	50	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.83867 1.67734 2.51601 3.35468 4.19335 5.03202 5.87069 6.70936 7.54803	0.54463 1.08927 1.63391 2.17855 2.72319 3.26783 3.81247 4.35711 4.90175	0.82903 1.65807 2.48711 3.31615 4.14518 4.97422 5.80326 0.63230 7.46133	0.55919 1.11838 1.67757 2.23677 2.79596 3.35515 3.91435 4.47354 5.03273	0.81915 1.63830 2.45745 3.27660 4.09576 4.91491 5.73406 6.55321 7.37236	0.57357 1.14715 1.72072 2.29430 2.86788 3.44145 4.01503 4.58861 5.16218	1 2 3 4 50 78 9	60
15	1 2 3 4 5 6 7 8 9	0.83628 1.67257 2.50885 3.34514 4.18143 5.01771 5.85400 6.69028 7.52657	0.54829 1.09658 1.64487 2.19317 2.74146 3.28975 3.83805 4.38634 4.93463	0.82659 1.65318 2.47977 3.30636 4.13295 4.95954 5.78613 6.61272 7.43931	0.56280 1.12560 1.68841 2.25121 2.81402 3.37682 3.93963 4.50243 5.06524	0.81664 1.63328 2.44992 3.26656 4.08320 4.89984 5.71649 6.53313 7.34977	0.57714 1.15429 1.73143 2.30858 2.88572 3.46287 4.04001 4.61716 5.19430	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.83388 1.66777 2.50165 3.33554 4.16942 5.00331 5.83720 6.67108 7.50497	0.55193 1.10387 1.65581 2.20774 2.75968 3.31162 3.86355 4.41549 4.96743	0.82412 1.64825 2.47237 3.29650 4.12003 4.94475 5.76888 6.59300 7.41713	0.56640 1.13281 1.69921 2.26562 2.83203 3.39843 3.96484 4.53124 5.09765	0.81411 1.62823 2.44234 3.25646 4.07057 4.88469 5.69880 6.51292 7.3 2703	0.58070 1.16140 2.32281 2.90351 3.48421 4.06492 4.64562 5.22632	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.83147 1.66294 2.49441 3.32588 4.15735 4.98882 5.82029 6.65176 7.48323	0.55557 1.11114 1.66671 2.22228 2.77785 3.33342 3.88899 4.44456 5.00013	0.82164 1.64329 2.46494 3.28658 4.10823 4.92988 5.75152 6.57317 7.39482	5.56999 1.13999 2.27998 2.84998 3.41998 3.98997 4.55997 5.12997	0.81157 1.62314 2.43472 3.24629 4.05787 4.86944 5.68101 6.49260 7.30416	0.58425 1.16850 1.75275 2.33700 2.92125 3.50550 4.08975 4.67400 5.25825	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
Ś	Ce.	5	6°	5	5 °	5	4 °	ë	

9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

.

ites.	Distance.	3	6 °	3	7 °	3	8 °	Distance.	ttes.
Minutes.	Dista	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minutes.
0	1 2 3 4 5 6 7 8 9	0.80901 1.61803 2.42705 3.23606 4.04508 4.85410 5.66311 6.47213 7.28115	0.58778 1.17557 1.76335 2.35114 2.93892 3.52671 4.11449 4.70228 5.29006	0.79863 1.59727 2.39590 3.19454 3.99317 4.79181 5.59044 6.38908 7.18771	0.60181 1.20363 1.80544 2.40726 3.00907 3.61089 4.21270 4.81452 5.41633	0.78801 1.57602 2.36403 3.15204 3.94005 4.72806 5.51607 6.30408 7.09209	0.61 566 1.231 32 1.84698 2.46264 3.078 30 3.69396 4.30963 4.92 529 5.54095	1 2 3 4 56 78 9	60
15	1 2 3 4 5 6 7 8 9	0.80644 1.61288 2.41933 3.22577 4.03222 4.83866 5.64511 6.45155 7.25800	0.59130 1.18261 1.77392 2.36523 2.95654 3.54785 4.13916 4.73047 5.32178	0.79600 1.59200 2.38800 3.18400 3.98001 4.77601 5.57201 6.36801 7.16401	0.60529 1.21058 1.81588 2.42117 3.02647 3.63176 4.23705 4.84235 5.44764	1.78531 1.57063 2.35595 3.14126 3.92658 4.71190 5.49721 6.28253 7.06785	0.61909 1.23818 1.85728 2.47637 3.09547 3.71456 4.33365 4.95275 5.57184	1 2 3 4 56 78 9	45
30	1 2 34 56 78 9	0.80385 1.60771 2.41157 3.21542 4.01928 4.82314 5.62699 6.43085 7.23471	0.59482 1.18964 1.78446 2.37929 2.97411 3.56893 4.16375 4.75858 5.35340	0.79335 1.58670 2.38005 3.17341 3.96076 4.76011 5.55347 6.34682 7.14017	0.60876 1.21752 1.82628 2.43504 3.04380 3.65256 4.26132 4.87009 5.47885	0.78260 1.56521 2.34782 3.13043 3.91304 4.69564 5.47825 6.26086 7.04347	0.62251 1.24502 1.86754 2.49005 3.11257 3.73508 4.35760 4.98011 5.60263	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.80125 1.60250 2.40376 3.20501 4.00526 4.80752 5.60877 6.41003 7.21128	0.59832 1.19664 1.79497 2.39329 2.99162 3.58994 4.18827 4.78659 5.38492	0.79068 1.58137 2.37206 3.16275 3.95344 4.74413 5.53482 6.32551 7.11620	0.61221 1.22443 1.83665 2.44886 3.06108 3.67330 4.28552 4.89773 5.50995	0.77988 1.55946 2.33965 3.11953 3.89942 4.67930 5.45919 6.23907 7.01896	0.62592 1.25184 1.87777 2.50369 3.12961 3.75554 4.38146 5.00738 5.63331	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. 53	Lat. 3°	Dep. 5	Lat. 2°	Dep. 5	Lat. L°	Distance.	Minutes.

ites.	Distance.	39	9 °	40) °	4:	L°	Distance.	rtes.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minutes.
o	1 2 3 4 5 6 7 8 9	0.777 14 1.55429 2.33143 3.10858 3.88573 4.66287 5.44002 6.21716 6.99431	0.62932 1.25864 1.88796 2.51728 3.14660 3.77592 4.40524 5.03456 5.66388	0.76604 1.53208 2.29813 3.06417 3.83022 4.59626 5.36231 6.12835 6.89439	0.64278 1.28557 1.92836 2.57115 3.21393 3.85672 4.49951 5.14230 5.78508	0.7 5470 1.50941 2.26412 3.01883 3.77 354 4.52825 5.28296 6.03767 6.79238	0.65605 1.31211 1.96817 2.62423 3.28029 3.93635 4.59241 5.24847 5.90453	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.77439 1.54878 2.32317 3.09757 3.87196 4.64635 5.42074 6.19514 6.96953	0.63270 1.26541 1.89811 2.53082 3.16352 3.79623 4.42893 5.69434	0.76323 1.52646 2.28969 3.05293 3.81616 4.57939 5.34262 6.10586 6.86909	0.64612 1.29224 1.93837 2.58449 3.23062 3.87674 4.52286 5.16899 5.81511	0.7 5184 1.50368 2.25552 3.00736 3.7 5920 4.51104 5.26288 6.01472 6.76656	0.65934 1.31869 1.97803 2.63738 3.29672 3.95607 4.61542 5.27476 5.93411	1 2 3 4 56 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.77162 1.54324 2.31487 3.08649 3.85812 4.62974 5.40137 6.17299 6.94462	0.63607 1.27215 1.90823 2.54431 3.18039 3.81646 4.45254 5.08862 5.72470	0.76040 1.52081 2.28121 3.04162 3.80203 4.56243 5.32284 6.08324 6.8325	0.64944 1.29889 1.94834 2.59779 3.24724 3.89668 4.54613 5.19558 5.84503	0.74895 1.49791 2.24686 2.99582 3.74477 4.49373 5.24268 5.99164 6.74060	0.66262 1.32524 1.98786 2.65048 3.31310 3.97572 4.63834 5.30096 5.96358	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.76884 1.53768 2.30552 3.07536 3.84420 4.61305 5.38189 6.15073 6.91957	0.63943 1.27887 1.91831 2.55775 3.19719 3.83663 4.47607 5.11551 5.75495	0.7 57 56 1.51 51 3 2.27 269 3.03026 3.78782 4.54539 5.30295 6.06052 6.81808	0.65276 1.30552 1.95828 2.61104 2.26380 3.91656 4.56932 5.22208 5.87484	0.74605 1.49211 2.23817 2.98422 3.73028 4.47634 5.22240 5.96845 6.71451	0.66588 1.33176 2.66352 3.32940 3.99529 4.66117 5.32705 5.99293	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
ites.	ance.	5	0 °	4	9°	4	.8 °	nce.	tes.

SMITHSONIAN TABLES.

45

ç

TABLE 9.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	4:	2 °	4:	3 °	44	10	Distance.	ntes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Minutes.
0	1 2 3 4 5 6 7 8 9	0.74314 1.48628 2.22943 2.97257 3.71572 4.45886 5.20201 5.94515 6.68830	0.66913 1.33826 2.00739 2.67652 3.34555 4.01478 4.68391 5.35304 6.02217	0.7 31 35 1.46270 2.19406 2.92541 3.65676 4.38812 5.11947 5.85082 6.58218	0.68199 1.36399 2.04599 2.72799 3.40999 4.09199 4.77398 5.45598 6.13798	0-71933 1.43867 2.15801 2.87735 3.59669 4.31603 5.03537 5.75471 6.47405	0.69465 1.38931 2.08397 2.77863 3.47329 4.16795 4.86260 5.55726 6.25192	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.74021 1.48043 2.22065 2.96087 3.70109 4.44130 5.18152 5.92174 6.66196	0.67236 1.34473 2.01710 2.68946 3.36183 4.03420 4.70656 5.37893 6.05130	0.72837 1.45674 2.18511 2.01348 3.64185 4.37022 5.09859 5.82696 6.55533	0.68518 1.37036 2.055554 2.74073 3.42591 4.11109 4.79628 5.48146 6.16664	0.71630 1.43260 2.14890 2.86520 3.58151 4.29781 5.01411 5.73041 6.44671	0.69779 1.39558 2.09337 2.79116 3.48895 4.18674 4.88453 5.58232 6.28011	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.73727 1.47455 2.21183 2.94910 3.68638 4.42366 5.16094 5.89821 6.63549	0.67559 1.35118 2.02677 2.70236 3.37795 4.05354 4.72913 5.40472 6.08031	0.72537 1.45074 2.17612 2.00149 3.62687 4.35224 5.80299 6.52836	0.68835 1.37670 2.06506 2.75341 3.44177 4.13012 4.81848 5.50683 6.19519	0.71325 1.42650 2.13975 2.85300 3.56625 4.27950 4.99275 5.70600 6.41925	0.70000 1.40181 2.10272 2.80363 3.50454 4.20545 4.90636 5.60727 6.30818	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.7 34 32 1.46864 . 2.20296 2.937 29 3.67161 4.40 593 5.1402 5 5.874 58 6.60890	0.67880 1.35760 2.03640 2.71520 3.39400 4.07280 4.07280 4.75160 5.43040 6.10920	0.72236 1.44472 2.16709 2.88945 3.61182 4.33418 5.05654 5.77891 6.50127	0.691 51 1.38 302 2.07453 2.76605 3.457 56 4.14907 4.84059 5.53210 6.22361	0.71018 1.42037 2.13055 2.84074 3.55092 4.26111 4.97129 5.68148 6.39166	0.70401 1.40802 2.11204 2.81605 3.52007 4.22408 4.92810 5.63211 6.33613	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes.
es.	ICe.	4	7 °	4	6 °	4	5°	nce.	es.

SMITHSONIAN TABLEB.

46

,

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

ince.	4	50	ince.	
Distance.	Lat.	Dep.	Distance.	
1	0.70710	0.70710	1	
2	1.41421	1.41421	2	
3	2.12132	2.12132	3	
4	2.82842	2.82842	4	
5	3.53553	3.53553	5	
6	4.24264	4.24264	6	
7	4-94974	4.94974	7	
8	5.65685	5.65685	8	
9	6.36396	6.36396	9	
Dist	Dep.	Lat.	Dist	
Distance.	4	5°	Distance.	

SMITHSONIAN TABLES.

47

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in Enclish FEET.

Lat.	0°	Io	2 ⁰	3°	4°	5°	6°	7°	8°	9°	100	P. P.
	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	7.317	
0/	7379	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709	[
1 2 3	7379 7379 7379	7392 7393 7394	7434 7435 7436	750 r 7503 7504	7595 7597 7599	7716 7719 7721	7864 7866 7869	8037 8040 8043	8237 8240 8244	8462 8466 8470	8713 8718 8722	1
4 5 6	7379 7379 7379	7394 7395 7395	7437 7438 7438	7506 7507 7508	7600 7602 7604	7723 7726 7728	7872 7875 7877	8046 8050 8053	8247 8251 8255	8474 8478 8482	8727 8731 8735	10 .2
7 8 9	7379 7379 7379	7396 7396 7397	7439 7440 7441	7510 7511 7513	7606 7608 7610	7730 7732 7735	7880 7883 7885	8056 8059 8062	8258 8262 8265	8486 8490 8494	8740 8744 8749	20 .3 50 .5 40 .7 50 .8
10	7379	7397	7442	7514	7612	7737	7888	8065	8269	8498	8753	60 1,0
11 12 13	7379 7379 7379	7398 7398 7399	7443 7444 7445	7515 7517 7518	7614 7616 7618	7739 7742 7744	7891 7894 7896	8068 8071 8075	8273 8276 8280	8502 8506 8510	8758 8762 8767	2
14 15 16	7379 7380 7380	7399 7400 740 I	7446 7447 7448	7520 7521 7522	7619 7621 7623	7746 7749 7751	7899 7902 79 05	8078 8081 8084	8283 8287 8291	8514 8518 8523	8771 8776 8780	10 .3
17 18 19	7380 7380 7380	7401 7402 7402	7449 7450 7451	7524 7525 7527	7625 7627 7629	7753 7755 7757	7908 7910 7913	8087 809 t 8094	8294 8298 8301	8527 8531 8535	8785 8789 8794	20 .7 30 I.0 40 I.3 50 I.7
20	7380	7403	7452	7528	763 I	7760	7916	8097	8305	8539	8798	60 2.0
21 22 23	7380 7380 7381	7404 7404 7405	7453 7454 7455	7 5 3 0 7 5 3 1 7 5 3 3	. 7633 7635 7637	7762 7765 - 7767	7919 7922 7924	8100 8104 8107	8309 8312 8316	8543 8547 8551	8803 8807 8812	3
24 25 26	7381 7381 7381	7405 7406 7407	7456 7458 7459	7534 7535 7537	7638 7640 7642	7770 7772 7774	7927 7930 7933	8110 8114 8117	8320 8324 8327	8555 8559 8564	8816 8821 8826	10 .5
27 28 29	7381 7382 7382	7407 7408 7408	7460 7461 7462	7538 7540 7541	7644 7646 7648	7777 7779 7782	7936 7938 794 I	8120 8123 8127	8331 8335 8338	8568 8572 8576	8830 8835 8839	20 I.0 30 I.5 40 2.0 50 2.5
30	7382	7409	7463	7543	7650	7784	7944	8130	8342	8580	8844	60 3.0
31 32 33	7382 73 ⁸ 3 73 ⁸ 3	7410 7410 7411	7464 7465 7466	7545 7546 7548	7652 7654 7656	7786 77 ⁸ 9 7791	7947 795 0 7953	8133 8137 8140	8346 8350 8353	8584 8588 8593	8849 8853 8858	4
34 35 36	7383 7384 73 ⁸ 4	7412 7413 7413	7467 7469 7470	7549 7551 7553	7658 7661 7663	7794 7796 7799	7956 7959 7961	8144 8147 8150	8357 8361 8365	8597 8601 8605	8862 8867 8872	10 .7
37 38 39	7384 7384 73 ⁸ 5	7414 7415 7415	7471 7472 7473	7554 755 ⁶ 7557	7665 7667 7669	7801 7804 7806	7964 7967 7970	8154 8157 8161	8369 8372 8376	8609 8614 8618	8876 8881 8885	30 2.0 40 2.7 50 3.3
40	73 ⁸ 5	7416	7474	7559	7671	7809	7973	8164	8380	8622	8890	60 4.0
41 42 43	7385 7386 7386	7417 7418 7418	7 175 1 76 478	7561 7562 7564	7673 7675 7677	7811 7814 7816	7976 7979 7982	8167 8171 8174	8384 8388 8392	8626 8631 8635	8895 8899 8904	5
44 45 46	7386 7387 7387 7387	7419 7420 7427	7479 7480 7482	7566 7567 7569	7679 7682 7684	7819 7821 7824	7985 7988 7991	8178 8181 8184	8396 8400 8403	8639 8643 8648	8909 8914 8918	10 .8 20 1.7
47 48 49	73 ⁸ 7 73 ⁸⁸	7422 7422 7423	7483 7484 7486	7571 7573 7574	7686 7688 7690	7826 7829 7831	7994 7997 8000	8188 8191 8195	8407 8411 8415	8652 8656 8661	8923 8928 8932	30 2.5 40 3.3 50 4.2
50	7388	7424	7487	7 576	7692	7834	8003	8198	8419	8665	8937	60 5.0
51 52 53	7388 7389 7389	7425 7426 7427	7488 7489 7490	7578 7579 7581	7694 7696 7699	7837 7839 7842	8006 8009 8012	8201 8205 8208	8423 8427 8431	8669 8674 8678	8942 8947 8951	
54 55 56	7390 7390 7390	7428 7429 7429	7491 7493 7494	7583 7584 7586	7701 7703 7705	7845 7848 7850	8015 8019 8022	8212 8215 8219	8435 8439 8442	8683 8687 8691	8956 8961 8966	
57 58 59	7391 7391 7392	7430 7431 7432	7496 7497 7498	7588 7590 7591	7707 7710 7712	7853 7856 7858	8025 8028 8031	8222 8226 8229	8446 8450 8454	8696 8700 8705	8971 8975 8980	
60	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709	8985	
MITH	CONIAN	TABLES										

[Derivation of table explained on p. xlv.]

TABLE 10.

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English Feet.

[Derivation	of ta	ble e	xplained	on	p.	xlv.]	
-------------	-------	-------	----------	----	----	-------	--

Lat.	IIo	I 2 ⁰	13°	14°	1 5°	16°	17°	18º	19°	20 ⁰		P. P.
	7.317	7.317	7.317	7.317	7.318	7.318	7.318	7.318	7.318	7.318		
0′	8985	9285	9611	9960	0333	0730	1149	1 591	2054	2539		4
1 2	8990 8995	9290 9296	9617 9622	9966 9972	0340 5346	0737 0744	1156 1163	1599 1606	2062 2070	2547 2556		
3	8999	9301	9628	9978	0353	0750	1171	1614	2078	2564	10 20	•7
4 5 6	9004 9009 9014	9306 9312 9317	9633 9639 9645	9984 9990 9996	0359 0366 0372	0757 0764 0771	1178 1185 1192	1621 1629 1637	2086 2094 2102	2572 2580 2589	30 40 50	1.3 2.0 2.7 3.3
7 8 9	9019 9023 9028	9322 9327 9333	9650 9656 9661	*0002 *0008 *0014	0379 0385 0392	0778 0784 0791	1199 1207 1214	1644 1652 1659	2110 2118 2126	2597 2605 2614	- 	4.0
10	9033	9338	9667	*0020	a 398	0798	1221	1667	2134	2622		5
11 12 13	9038 9043 9048	9343 9349 9354	9673 . 9678 9684	*0026 *0032 *0039	0404 0411 0418	0805 0812 0819	1228 1236 1243	1675 1682 1690	2142 2150 2158	2630 2639 2647	10	.8
14 15 16	9053 9058 9062	9359 9365 9370	9690 9696 9701	*0045 *0051 *0057	0424 0430 0437	0826 0833 0839	1250 1258 1265	1697 1705 1713	2166 2174 2182	2655 2663 2672	20 30 40	1.7 2.5 3.3
17 18 19	9067 9072 9077	9375 9380 9386	9707 9713 9718	*0063 *0070 *0076	0443 0450 0456	0846 0853 0860	1272 1279 1287	1720 1728 1735	2190 2198 2206	2680 2688 2697	50 60	4.2 5.0
20	9082	9300	9724	*0082	0463	0867	1294	1743	2214	2705		
21	9087	9396	97.30	*0088	0470	0874	1301	1751	2222	2713		8
22 23	9092 9097 9102	9402 9407	9736 9741	*0094 *0101 *0107	0476 0483 0489	0881 0888 0895	1309 1316 1323	1758 1766 1774	2230 2238 2246	2722 2730 2739	10 20	1.0 2.0
24 25 26	9107 9112	9413 9418 9423	9747 9753 9759	*0113 *0119	0496 0503	0902 0909	1330 1338	1781 1789	2254 2262	2747 2755	30 40 50	3.0 4.0 5.0
27 28 29	9117 9122 9127	9429 9434 9440	9765 9770 9776	*0125 *0132 *0138	0509 0516 0522	0916 0923 0930	1345 1352 1360	1797 1805 1812	2270 2278 2286	2764 2772 2781	60	6.0
30	9132	9445	9782	*0144	0529	o937	1367	1820	2294	2789		7
31 32 33	9137 9142 9147	9450 9456 9461	9788 9794 9800	*0150 *0156 *0163	0536 0542 0549	0944 0951 0958	1374 1382 1389	1828 1835 1843	2302 2310 2318	2797 2806 2814	10	1.2
34	9152	9467 9472	9806 9812	*0169 *0175	0555 0562	0965 0972	1397 1404	1851 1858	2326 2334	2823 283 I	20 30	2.3 3.5
35 36	9157 9162	9472 9477	9817	*0181	0569	0979	1411	1866	2343	2840	40 50	4.7 5.8
37 38 39	9167 9172 9177	9483 9488 9494	9823 9829 9835	*018 7 *0194 *0200	0575 0582 0588	0986 0993 1000	1419 1426 1434	1874 1882 1889	2351 2359 2367	2848 2857 2865	60	7.0
40	9182	9499	9841	*0206	0595	1007	1441	1897	2375	2874		8
41 42	9187 9192	9505 9510 9516	9847 9853 9859	*0212 *0219 *0225	0602 0608 0615	1014 1021 1028	1448 1456 1463	1905 1913 1920	2383 2391 2400	2882 2891 2899	10	1.3
43 44	9197 9202	9510	9865	*0231	0622	1035	1471	1928	2408	2908	20 30	2.7 4.0
45 46	9207 9213	9527 9533	9871 9876	*0238 *0244	0629 0635	1042 1050	1479 1486	1936 1944	2416 2424	2916 2925	40 50	5·3 6.7
47	9218	9538	9882	*oz s o	0642	1057	1494	1952	2432	2933	60	8.a
48 49	9223 9228	9544 9549	9888 9894	*0256 *0263	0649 0655	1064 1071	1501	1959 1967	2441 2449	2942 2950		
60	9233	9555	9900	*0269	0662	1078	1516	1975	2457	2959		9
51 52	9238 9243	9561 9566	9906 9912	*0275 *0282	0669 0676	1085 1092	1524 1531	1983 1991	2465 2473	2968 2976	10	
53	9249	9572	9918	*o288	0682	1099	1539	1999 2007	2482	2985 2002	20	1.5 3.0
54 55	9254 9259	9577 9583	9924 9930	*0295 *0301	0689 0696	1106 1113	1546 1554	2014	2490 2498	2993 3002	30 49	4.5 6.0
56	9264	9589	9936	*0307	0703	1121 1128	1561 1569	2022 2030	2506 2514	3011 3019	50 60	7·5 9.0
57 58 59	9269 9275 9280	9594 9600 9605	9942 9948 9954	*0314 *0320 *0327	0710 0716 0723	1120 1135 1142	1576 1584	2030 2038 2046	2514 2523 2531	3028 3036		
80	9285	9611	9960	*0333	0730	1149	1 591	2054	2539	3045		
											1	

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in Enclish FEET.

[Derivation of table explained on p. xlv.]

Lat.	210	22 ⁰	23°	24 ⁰	25°	26º	27°	28º	29 ⁰	30°		P. P.
	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318	7.318		
0⁄	3045	3570	4115	4678	5259	5858	6474	7105	7751	8412]	
1 2 3	3053 3062 3070	3579 3588 3597	4124 4133 - 4142	4688 4697 4707	5269 5279 5289	5868 5878 5889	6484 6494 6505	7116 7126 7137	7762 7773 7784	8423 8434 8445		
4 5 6	3079 3088 3096	3606 3614 3623	4152 4161 4170	4716 4726 4735	5299 5309 5319	5899 5909 5919	6515 6526 6536	7148 7158 7169	7795 7806 7817	8457 8468 8479		8
7 8 9	3105 3113 3122	3632 3641 3650	4179 4189 4198	4745 4754 4764	5328 5338 5348	5929 5939 5949	6546 6557 6567	7180 7190 7201	7828 7839 7850	8490 8501 8512	10	I.3
10	3131	3659	4207	4774	5358	5960	6578	7212	7860	8523	20 30	2.6 4.0
11 12 13	3139 3148 3157	3668 3677 3686	4216 4226 4235	47 ⁸ 3 4793 4802	5368 5378 5388	5970 5980 5990	6588 6599 6609	7222 7233 7244	7871 7882 7893	8535 8546 8557	40 50 60	5·3 6.7 8.0
14 15 16	3165 3174 3183	3695 3704 3713	4244 4254 4263	4812 4822 4831	5398 5408 5417	6000 6011 6021	6620 6630 6640	7254 7265 7276	7904 7915 7926	8568 8579 8591		8
17 18 19	3191 3200 3209	3722 3731 3740	4272 4282 4291	4841 4851 4860	5427 5437 5447	6031 6041 6051	6651 6661 6672	7287 7297 7308	7937 7948 7959	8602 8613 8624	10	1.5
20	3217	3749	4300	4870	5457	6062	6682	7319	7970	8635	20 30	3.0 4.5
21 22 23	3226 3235 3244	3758 3767 3776	4310 4319 4328	4879 4889 4899	54 ⁶ 7 5477 5487	6072 6082 6092	6693 6703 6714	7329 7340 7351	7981 7992 8003	8647 8658 8669	40 50 60	6.0 7.5 9.0
24 25 26	3252 3261 3270	3785 3794 3804	4338 4347 4356	4908 4918 4928	5497 55 ⁰⁷ 55 ¹ 7	6102 6113 6123	6724 6735 6745	7362 7372 73 ⁸ 3	8014 8025 8036	8680 869 I 8703		10
27 28 29	3278 3287 3296	3813 3822 3831	4366 4375 4384	4937 4947 4957	5527 5537 5547	6133 6143 6154 .	6756 6766 6777	7394 7405 7416	8047 8058 8069	8714 8725 8736	10	1.7
30	3305	3840	4394	4966	5557	6164	6787	7426	8080	8747	20 30	3.3 5.0
31 32 33	3313 3322 3331	3849 3858 3 ⁸⁶ 7	4403 4413 4422	4976 4986 4996	55 ⁶ 7 5577 55 ⁸ 7	6174 6185 6195	6798 6808 6819	7437 7448 7459	8091 8102 8113	8759 8770 8781	40 50 60	6.7 8.3 10.0
34 35 36	3340 3349 3357	3876 3885 3894	4431 4441 4450	5005 5015 5025	5597 5607 5617	6205 6215 6226	6829 6840 6851	7469 7480 7491	8124 8135 8146	8792 8804 8815		11
37 38 39	3366 3375 3384	3904 3913 3922	4460 4469 4479	5034 5044 5054	5627 5637 5647	6236 6246 6256	6861 6872 6882	7502 7513 7523	8157 8168 8179	8826 8838 8849	10	1.8
40	3393	3931	4488	5064	5 ⁶ 57	6267	6893	7534	8190	8860	20 30	3.7 5.5
41 42 43	3401 3410 3419	3940 3949 3958	4498 4507 4516	5073 5083 5093	5667 5677 5687	6277 6287 6298	6903 6914 6924	7545 7556 7567	8201 8212 8223	8871 8883 8894	40 50 60	7.3 9.2 11.0
44 45 46	3428 3437 3446	3967 3977 3986	4526 4535 4545	5103 5112 5122	5697 5707 5717	6308 6318 6329	6935 6946 6956	7578 7588 7599	8234 8246 8257	8905 8916 8928		12
47 48 49	3454 3463 3472	3995 4004 4013	4554 4564 4573	5132 5142 5151	57 27 57 37 57 47	6339 6349 6360	6967 6977 6988	7610 7621 7632	8268 8279 8280	8939 8950 8962	10	2.0
60	3481	4022	4583	5 161	5757	6370	6999	7643	8301	8973	20 30	4.0 6.0
51 52 53	3490 3499 3508	4032 4041 4050	4592 4602 4611	5171 5181 5191	57 ⁶ 7 5777 5787	6380 6391 6401	7009 7020 7030	7653 7664 7675	8312 8323 8334	8984 8996 9007	40 50 60	8.0 10.0 12.0
54 55 56	3516 3525 3534	4059 4068 4078	4621 4630 4640	5200 5210 5220	5798 5808 5818	6411 6422 6432	7041 7052 7062	7686 7697 7708	8345 8356 8368	9018 9030 9041		
57 58 59	3543 3552 3561	4086 4096 4105	4649 4659 4668	5230 5240 5250	·5828 5838 5848	6442 6453 6463	7073 7084 7094	7719 7729 7740	8379 8390 8402	9052 9064 9075		
80	3570	4115	4678	5259	5858	6474	7105	775 I	8412	9086		

TABLE 10.

LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English FEET.

[Derivation	of table	explained	on p. :	dv.]

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.7 5.5 7.3 9.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.0 6.0 8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0 12.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2 4.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5 8.7 10.8
50 9658 *0355 1063 1781 2509 3245 3989 4740 5497 6258 60	13.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
80 9773 *0472 1182 1902 2631 3369 4114 4866 5623 6385	

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in Enclish FEET.

7.319 7.319 7.319 7.319 7.320 <th< th=""><th>Lat.</th><th>41°</th><th>42⁰</th><th>43°</th><th>44°</th><th>45°</th><th>46°</th><th>47°</th><th>48°</th><th>49°</th><th>50°</th><th>1</th><th>P. P.</th></th<>	Lat.	41°	42 ⁰	43°	44°	45°	46°	47°	48°	49°	50°	1	P. P.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7.319	7.319	7.319	7.319	7.319	7.320	7.320	7.320	7.320	7.320		
a 6411 7107 7946 8271 9480 2051 3331 3331 4 6436 7000 7972 8743 9515 3357 3357 3357 5 6449 7216 7995 8756 9541 933 1054 1857 2591 3357 6 6472 7218 8007 8576 9544 933 1007 1863 2607 3352 6 6475 7244 8007 8587 9567 0338 1100 1579 2043 3445 100 513 7267 8038 9667 0339 11741 1943 2495 3445 10 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0	0/	6385	7152	7921	8692	9464	0236	1007	1776	2543	3306		
4 6.446 7203 7772 8.783 0215 0262 0207 128 1367 3367 3367 6 6.462 7208 7706 8760 9341 0313 100 171 1850 2607 3385 3407 7 6.467 7241 8033 8794 9266 0318 1102 1590 2663 3442 3005 3463 3467 3433 10 6513 7280 8049 8880 9592 0364 1135 1004 2603 3445 10 2.0 14 6535 7236 8057 8887 9669 0411 1132 1903 2700 3471 3403 4.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 4.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 <th>2</th> <th>6411</th> <th>7177</th> <th>7946</th> <th>8717</th> <th>9489</th> <th>0261</th> <th>1033</th> <th>1802</th> <th>2569</th> <th>3331</th> <th></th> <th></th>	2	6411	7177	7946	8717	9489	0261	1033	1802	2569	3331		
5 6.475 6.500 7744 80:00 8050 8792 8050 9592 9570 0351 1120 1120 18592 1305 2455 3425 3427 10 6513 7287 80:00 80:02 8880 9592 03:64 1135 1:902 26:35 3:425 11 6526 7287 80:62 8834 96:83 0377 1:148 1:907 26:35 3:445 10 2.0 13 6535 7131 80:07 8859 96:41 04:03 1:174 1943 2709 3:477 3:600 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10 6:0 10:0 10 6:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 10:0 12:0 10:0 10:0	4	6436 6449	7203 7216	7972 7985	8743 8756	9515 9528	0287 0300	1058 1071	1827 1840	2594 2607	3357 3369		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 8	6475 6487	7241 7254	8010 8023	8782 8794	9554 9566	0326 0338	1097 1110	1866 1879	2632	3395 3407		
11 65.2 7202 8052 8833 6055 0377 11.48 1017 2683 3445 10 2.0 13 6553 7318 8002 8872 6944 0416 1161 1030 2695 3445 10 4.0 14 6564 7318 8002 8872 6964 0416 1187 1055 2721 3443 400 8.0 8.0 8.0 100 1.0 4.0 100 4.0 100 1.043 1709 10968 2721 3443 400 8.0 8.0 8.0 8.0 8.0 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 <td< th=""><th></th><th></th><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>12</th></td<>			<u> </u>										12
13 0531 7310 0007 0539 9041 0433 1174 7493 2709 3473 300 5.0 14 0557 7344 8113 8884 9657 0449 1109 1965 2734 3483 500 500 10.0 15 6567 7344 8112 8884 9657 0441 1212 1994 2760 3511 10.0 11.0 10.0 <th></th> <th>6526</th> <th>7292</th> <th>8062 8075</th> <th>8846</th> <th>9605 9618</th> <th>0390</th> <th>1148</th> <th>1930</th> <th>2696</th> <th>3458</th> <th></th> <th></th>		6526	7292	8062 8075	8846	9605 9618	0390	1148	1930	269 6	3458		
16 6589 7136 8130 8070 9669 0.444 1212 19981 2745 3509 60 12.0 18 6615 71362 8130 8005 9005 0.464 1225 1094 27765 3514 20 66420 7408 8177 8949 9721 0.493 1264 2023 27798 3559 21 6663 74208 8100 8962 9734 0506 1226 2005 2831 3555 23 6679 7445 8216 8977 9767 0531 1326 2005 2831 3603 3597 24 6602 7499 8242 9000 9772 0544 1315 2002 2864 3633 3675 25 6774 7497 8242 9039 9814 0583 1355 2122 2887 3666 25 7557 7523 8267 9039 9814 0583 1356 2124 2000 3661 26 67744	14	6564	7331	8100	8872	9644	0416	1187	1955	2721	3483	30 40	6.0 8.0
10 6628 7395 8165 8936 9708 0480 1251 2019 2785 3547 20 6640 7408 8177 8949 9721 0403 1264 2032 2775 3559 21 6653 7430 8100 8962 9724 0560 1276 2045 2811 3572 23 6679 7445 8213 9000 9772 0519 1226 2055 2831 3535 24 6707 7445 8249 9000 9771 1341 2100 2861 3535 27 6730 7407 8267 9039 9811 0533 1353 2124 2000 3661 29 7557 7523 8324 9050 0621 13362 2173 2038 3690 20 6768 7549 8312 9100 06570 1344 2165 2374 3056 31	16 17	6589 6602	7356 7369	8126 8139	8897 8910	9669 9682	0441 0454	1212	1994	2747 2760	3521	бо 	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					8923 8936	9695 9708	0467 0480						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6640	7408	8177	8949		0493	1264	2032		3559		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6666	7433	8203	8975	9747	0519	1289	2058	2823 2836	35 ⁸ 5 3597		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	6704	7472	8242	9013	9785	0557	1328	2096	2861	3623		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	6743	7510	8280	9052	9824	0595	1366	2134	2000	3661		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							·						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	6794	7561	8332	9103	9875	0647	1418	2186	2950	3711		13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	6819 6832	7587 7600	8357 8370	9129 9142	9901 9914	0673 0686	1443 1456	2211 2224	2976 2989	3736 3749	20	4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37									-		40	8.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38			8409		9953	0724	1494	2262	3027	3787		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	6896	7664	8434	9206	9978	0750	1520	2288	3052	3812		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	6921	7690	8460	9232	*0004	0776	1546	2313	3078	3838		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	6960	7728	8486 8499	9258 9270	*0030 *0043	0801 0814	1571 1584	2339 2352	3103 3116	3863		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6985	7754	8524	92 96	*0068	0840	1610		3141	3901		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				8537 8550			0853	1623 1635	2390	3154	3913		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u> </u>		0878	1648	2415	3179	3938		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	7049	7818	8589	9348 9361	*0133		1674	2441			ļ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 '		8692	9373	*0146	0917	1687	2454	3217	3976		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	7088	7856	8627	9399	*0171	0943	1712	2479	3243	4002		
58 7126 7895 8666 9438 *0210 0981 1751 2517 3281 4039 59 7139 7908 8679 9451 *0223 0994 1763 2530 3293 4052	57					*0197	0968						
80 7152 7921 8692 9464 *0236 1007 1776 2543 3306 4065	58	7126	7895	8666	9438	*0210	0981	1751	2517	3281	4039		
	90	7152	7931	8692	9464	*023 6	1007	1776	2543	3306			

[Derivation of table explained on p. xlv.]

TABLE 10.

LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in English Feet.

Lat.	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°	J	P. P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.321		
0'	4065	4817	5564	6303	7034	7756	8467	9168	9857	0534		
1 2	4077 4090	4829 4842	557.6 5589	6315 6327	7046 7058	7768 7780	8479 8491	9180 9191	9868 9880	0545 0556		
3	4102	4854 4867	5601 5613	6340 6352	7070 7082	7792 7804	8502 8514	9203 9214	9891 9903	0567 0578		13
5	4127	4879 4892	5625 5638	6364 6376	7094	7815 7827	8526 8538	9226 9238	9914 9925	0589 0601		
7	4152	4904	5650	6388	7119	7839	8550	9249	9937	0612	10 20	2.2 4.3
9	4165 4177	4917 4929	5662 5675	6401 6413	7131 7143	7851 7863	8561 8573	9261 9272	9948 9960	0623 0634	30 40	6.5 8.7 10.8
10	4190	4942	5687	6425	7155	7 ⁸ 75	8585	9284	9971	0645	50 60	13.0
11 12	4203 4215	4954 4967	5699 5712	6437 6449	7167 7179	7887 7899	8597 8608	9295 9307	9982 9994	0656 0667		
13 14	4228 4240	4979 4992	5724 5737	6462 6474	7191	7911 7923	8620 8632	9318 9330	*0005 *0016	o678 o689		
15	4253 4266	5004 5017	5737 5749 5761	6486 6498	7215	7923 7934 7946	8643 8655	9341 9353	*0027 *0039	0701		
17	4278	5029	5774	6510	7239	7958	8667	9364	*0050 *0061	0723		
10	4291 4303	5042 5054	5786 5799	6523 6535	7251 7263	7970 7982	8679 8690	9376 9387	*0073	0734 0745		
20	4316	5067	5811	6547	7275	7994	8702	9399	*0084	0756		
2 I 2 2	4328 4341	5079 5092	5823 5836	6559 6571	7287 7299	8006 8018	8714 8725	9410 9422	*0095 *0107	0767 0778		
23 24	4353 4366	5104	5848 5860	6584 6596	7311 7323	8030 8042	8737 8749	9433 9445	*0118 *0129	0789 0800		12
24 25 26	4378 4391	5117 5129 5141	5872 5885	6608 6620	7335 7348	8053 8065	8760 8772	9445 9456 9468	*0140 *0152	0812		
27	4403	5154	5897	6632 6645	7360	8077 8089	8784 8796	9479	*0163 *0174	0834 0845	10 20	2.0 4.0 6.0
28 29	4416 4428	5166 5179	5909 5922	6657	7372 7384	8101	8807	9491 9502	*0186	0856	30 40	8.0
30	4441	5191	5934	6669	7396	8113	8819	9514	*0197	0867	50 60	10-0 12.0
31 32 33	4454 4466 4479	5203 5216 5228	5946 5959 5971	6681 6693 6706	7408 7420 7432	8125 8137 8148	8831 8842 8854	9525 9537 9548	*0208 *0219 *0231	0878 0889 0900		
34 35 36	4491 4504 4517	5241 5253 5266	5983 5995 6008	6718 6730 6742	7444 7456 7468	8160 8172 8184	8866 8877 8889	9560 9571 9583	*0242 *0253 *0264	0911 0922 0933		
37 38 39	4529 4542 4554	5278 5291 5303	6020 6032 6045	6754 6767 6779	7480 7492 7504	8196 8207 8219	8901 8913 8924	9594 9606 9617	*0275 *0287 *0298	0944 0955 0966		:
40	4567	5316	6057	6791	7516	8231	8936	9629	*0309	0977		
41 42 43	4579 4592 4604	5328 5341 5353	6069 6082 6094	6803 6815 6828	7528 7540 7552	8243 8255 8266	8948 8959 8971	9640 9652 9663	*0320 *0332 *0343	0988 0999 1010		11
44	4617	5366	6106	6840	7564	8278	8982	9675 9686	*0354 *0365	1021 1032		
45 46	4629 4642	5378 5390	6118 6131	6852 6864	7576 7588	8290 8302	8994 9006	9697	*0377	1043	10 20	1.8
47 48 49	4654 4667 4 ⁶ 79	5403 5415 5428	6143 6155 6168	6876 6889 6901	7600 7612 7624	8314 8325 8337	9017 9029 9040	9709 9720 9732	*0388 *0399 *0411	1054 1065 1076	20 30 40	3.7 5.5 7.3 9.2
50	4692	5440	6180	6913	7636	8349	9052	9743	*0422	1087	60	11.0
51	4704 4717	5452 5465	6192 6205	6925 6937	7648 7660	8361 8373	9064 9075	9754 9766	*0433 *0444	1098 1109		
52 53	4729	5477	6217	6949	7672	8384	9087	9777	*0444 *0456	1120	ł	
54 55 56	4742 4754	5490 5502	6229 6241	6961 6973	7684	8396 8408	9098 9110	9789 9800 9811	*0467 *0478 *0489	1131 1142 1153		
50 57 58	47 ⁶ 7 4779	5514 5527	6254 6266	6986 6998	7708 7720	8420 8432	9122 9133	9823	*0500	1164		
58 59	4792 4804	5539 5552	6278 6291	7010 7022	7732 7744	8443 8455	9145 9156	9834 9846	*0512 *0523	1175 1186		
60	4817	5564	6303	7034	7756	8467	9168	9 ⁸ 57	*0534	1197		

[Derivation of table explained on p. xlv.]

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in Enclish FEET.

1	<u></u>		1	1	1	1			1			
Lat.	610	62°	63°	64°	65°	66°	6 7 °	68°	69°	· 70°		Р. Р.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0/	1197	1845	2479	3097	3698	4282	4848	5396	5924	6432		
1 2	1208 1219	1856 1866	2489 2500	3107 3117	3708 3718	4292 4301	4857 4867	5405 5414	5933 5941	6440 6448		
3	1230	1877	2510	3127	3728	4311	4876	5423	5950	6457		
4 5 6	1241 1251 1262	1888 1898 1909	2521 2531 2541	3137 3147 3158	3738 3747 3757	4320 4330 4340	4885 4894 4904	5432 5440 5449	5958 5967 5976	6465 6473 6481		11
78	1273	1920	2552	3168	3767	4349	4913	5458	5984	6489	10	1.8
9	1284 1295	1931 1941	2562 2573	3178 3188	3777 3787	43 59 4368	4922 4932	5467 5476	5993 600 I	6498 6506	20 30	3.7 5.5
10	1306	1952	2583	3198	3797	4378	4941	5485	6010	6514	40 50	7.3 9.2
11 12 13	1317 1328 1338	1963 1973 1984	2593 2604 2614	3208 3218 3228	3807 3817 3826	4387 4397 4406	4950 4959 4969	5494 5503 5512	6018 6027 6035	6522 6530 6539	60	11.0
14 15	1349 1360	1994 2005	2625 2635	3238 3248	3836 3846	4416	4978 4987	5521	6044	6547		
16	1371	2016	2645	3259	3856	4425 4435	4996	5529 5538	6052 6061	6555 6563		
17 18 19	1382 1392 1403	2026 2037 2047	2656 2666 2677	3269 3279 3289	3866 3875 3885	4444 445 4 44 ⁶ 3	5005 5015 5024	5547 5556 5565	6069 6078 6086	6571 6580 6588		10
20	1414	2058	2687	3299	3895	4473	5033	5574	6095	6596		
21 22	1425 1436	2069 2079	2697 2708	3309	3905	4482	5042	5583	6103 6112	6604 6612	10 20	1.7 3.3
23	I447	2090	2718	3319 3329	3915 3924	4492 4501	5051 5060	5592 5600	6120	6621	30 40	5.0 6.7
24 25 26	1458 1468 1479	2100 2111 2122	2728 2738 2749	3339 3349 3360	3934 3944 3954	4511 4520 4530	5060 5078 5088	5609 5618 5627	6129 6137 6146	6629 6637 6645	50 60	8.3 10.0
27 28	1490 1501	2132 2143	2759 2769	3370 3380	3964 3973	4539 4549	5097 5106	5636 5644	6154 6163	6653 6662		
29	1512	2153	2780	3390	3983	4558	5115	5653	6171	6670		
30	1523	2164	2790	3400	3993	4568	5124	5662	6180	6678		
31 32 33	1534 1545 1555	2175 2185 2196	2800 2811 2821	3410 3420 3430	4003 4012 4022	4577 4587 4596	5133 5142 5151	5671 5680 5688	6188 6197 6205	6686 6694 6702		9
34	1566 1577	2206 2217	283 I 284 I	3440	4032 4041	4606 4615	5160	5697	6214	6710	10	1.5
35 36	1588	2228	2852	3450 3460	4051	4015	5169 5179	5706 5715	6222 6230	6718 6727	20 30	3.0 4.5 6.0
37 38	1599 1609	2238 2249	2862 2872	3470 3480	4061 4071	4634 4643	5188 5197	5724 5732	6239 6247	6735 6743	40 50 60	7.5
39	1620	2259	2883	3490	4080	4653	5206	5741	6256	6751	60	9.0
40	1631	2270	2893	3 500	4090	4662	5215	5750	6264	6759		
41 42 43	1642 1652 1663	2280 2291 2301	2903 2913 2924	3510 3520 3530	4100 4109 4119	4671 4681 4690	5224 5233 5242	5759 5767 5776	6272 6281 6289	6767 6775 6783		
44	1674 1684	2312	2934	3540	4128	4699	5251	5785	6298	6791		
45 46	1695	2322 2333	2944 2954	3549 3559	4138 4148	4708 4718	5260 5270	5793 5802	6306 6314	6799 6807		8
47 48	1706 1717	2343	2964 2975	3569	4157	4727	5279	5811	6323	6815		
49	1727	2354 2364	2985	3579 35 ⁸ 9	4167 4176	4736 4746	5288 5297	5820 5828	6331 6340	6823 6831	10 20	1.3 2.6
50	1738	2375	2995	3599	4186	4755	5306	5837	6348	6839	30 40	4.0 5.3
51 52	1749 1759	2385 2396	3005 3015	3609 3619	4196	4764	5315	5846	6356	6847	50 60	8.0
53	1770	2390 2406	3026	3629	4205 4215	4774 47 ⁸ 3	5324 5333	5854 5863	6365 6373	6855 6863		
54 55	1781 1791	2417 2427	3036 3046	3639 3648	4224	4792 4801	5342	5872	6382	6871		
55 56	1802	2437	3056	3658	4234 4244	4811	5351 5360	5880 5889	6390 6398	6879 6887		
57 58	1813 1824	2448 2458	3066	3668 3678	4253	4820	5369	5898	6407	6895		
59	1834	2450	3077 3087	3688	4263 4272	4829 4839	5378 5387	5907 5915	6415 6424	6903 6911		
60	x845	2479	3097	3 698	4282	4848	5396	5924	6432	6919		
								1				

[Derivation of table explained on p. xlv.]

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ρ_m in Enclish FEET.

[Derivation of table explained on p. xlv.]

Lat.	71 ⁰	72 ⁰	73°	74°	75°	76°	77°	78º	79°	80°	I	P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.322	7.322		
0/	6919	7385	7829	8251	8650	9025	9377	9704	0007	0284		
1 2	6927 6935	7392 7400	7836 7843	8258 8265	8656 8663	9031 9037	9383 9388	9709 9714	0012	0288 0293		
3	6943 6951	7407	7851 7858	8271 8278	8669 8676	9043 9049	9394 9399	9720 9725	0021	0297 0302		
56	6958 6966	7422 7430	7865 7872	8285 8292	8682 8688	9055 9051	9399 9405 9411	9730 9735	0031	0306 0310	10 20	1.3 2.6
789	6974 6982 6990	7437 7445 7452	7879 7887 7894	8299 8305 8312	8695 8701 8708	9067 9073 9079	9416 9422 9427	9740 9746 9751	0041 0045 0050	0315 0319 0324	30 40 50 60	4.0 5.3 6.7
10	6998	7460	7903	8319	8714	9085	9433	9756	0055	0328		8.0
11	7006	7467	7908	8326	8720	9091	9438	9761	0060	0332		
12 13	7014 7021	7475 7482	7915 7922	8332 8339	8727 8733	9097 9103	9444 9449	9766 977 I	0064 0069	0337 0341		7
14 15	7029 7037	7490 7497	7929 7936	8346 8353	8739 8745	9109 9115	9455 9460	9776 9781	0074 0078	0345 0349		
16	7045	7505	7944	8359	8752	9121	9466	9 7 87	0083	0354	10	1.2
17 18 19	7053 7060 7068	7512 7520 7527	7951 7958 79 ⁶ 5	8366 8373 8379	8758 8764 8771	9127 9133 9139	9471 9477 9482	9792 9797 9802	0088 0093 0097	0358 0362 0367	20 30 40	2.3 3.5 4.7
20	7076	7535	7972	8386	8777	9145	9488	9807	0102	0371	50 60	4.7 5.8 7.0
21	7084 7092	7542	7979 7986	8393 8399	8783 8790	9151 9157	9493 9499	9812 9817	0107	0375		1
23	7099	7557	7993 8000	8406	8796 8802	9163	9504	9822 9827	0110	0379 0384		
24 25 26	7107 7115 7123	7565 7572 7580	8000 8007 8014	8413 8419 8426	8808 8815	9169 9174 9180	9510 9515 9521	9832 9838	0120 0125 0130	0388 0392 0396		6
27	7131	7587	8021	8433	8821	9186	9526	9843	0134	0390		
28 29	7138 7146	7595 7602	8028 8035	8440 8446	8827 8834	9192 9198	9532 9537	9848 9853	0139 0143	0405 0409	10 20 30	1.0 2.0
30	7154	7610	8042	8453	8840	9204	9543	9858	0148	0413	40	3.0 4.0 5.0
31 32	7162	7617 7625	8049 8056	8460 8466	8846 8852	9210 9216	9548	9863 9868	0153 0157	0417 0421	60	6.o
33	7170 7177	7632	8063	8473	8859	9221	9554 9559	9873	0162	0426		
34	7185	7639 7646	8070 8077	8479 8486	8865 8871	9227 9233	9565 9570	9878 9883	0166	0430 0434		
35 36	7201	7654	8084	8493	8877	9239	9575	9888	0176	0438		5
37 38	7209 7216	7661 7668	8091 8098	8499 8506	8883 8890	9245 9250	9581 9586	9893 9898	0180 0185	0442 0447		,
39	7224	7676	8105	8512	8896	9256	9592	9903	0189	0451	10 20	.8 1.7
40	7232	7683	8112	8519	8902	9262	9597	9908	0194	0455	30 40	2.5
41 42	7240 7247	7690 7798	8119 8126	8526 8532	8908 8914	9268 9274	9602 9608	9913 9918	0199 0203	0459 0463	50 60	4.2 5.0
43	7255	7705	8133	8539	8921	9279	9613	9923	0208	0467		<u> </u>
44 45	7263	7712 7719	8140 8147	8545 8552	8927 8933	9285 9291	9619 9624	9928 9933	0212 0217	0471 0475		
46	7278	77 27	8154	8559	8939	9297	9629	9938	0222	0480	1	-
47 48	7286	7734 7741	8161 8168	8565 8572	8945 8952	9303 9308	9635 9640	9943 9948	0226	0484 0488		4
49	7301	.7749	8175	8578	8958	9314	9646	9953	0235	0492		<u> </u>
50	7309	7756	8182	8585	8964	9320	9651	9958	0240	0496	10 20 30	.7 1.3 2.0
51 52	7317 7324	7763 7771	8189 8196	8591 8598	8970 8976	9326 9331	9656 9662	9963 9968	0244 0249	0500 0504	40	2.7
53	7332	7778	8203	8604	8982	9337	9667	9973	0253	0508	50 60	4.0
54 55	7339 7347	7785 7792	8210 8216	8611 8617	8988 8994	9343 9348	9672 9677	9978 9982	0258 0262	0512 0516		·
55 56	7355	7792 7800	8223	8624	9001	9354	9677 9683	9987	0266	0520		
57 58	7362	7807 7814	8230 8237	8630 8637	9007 9013	9360 9366	9688 9693	9992 9997	0271 0275	0524 0528		
59	7377	7822	8244	8643	9019	9371	9699	*0002	0280	0532	-	
60	73 ⁸ 5	7829	8251	8650	9025	9377	9704	*0007	0284	0536		
	1			, 	<u> </u>			<u> </u>	1	<u>.</u>		

SMITHSONIAN TABLES.

1

TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE ho_m in Enclish Feet.

[Derivation of table explained on p. xlv.]

5								-				
	Lat.	81°	82°	83°	84°	85°	86°	87°	88°	89°	P. 1	?.
		7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
ļ	0/	0536	0763	0963	1138	1285	1407	1501	1569	1609	_	
	1 2	0540	0766 07 7 0	0966 0969	1141 1143	1287 1289	1409 1410	1502 1504	1570 1571	1609 1610	4	
	3	0544 0548	0773	0972	1146	1292	1412	1505 1506	1571 1572	1610 1611	10	.7
	4 56	0552 0556 0560	0777 0780 0784	0975 0978 0982	1148 1151 1154	1294 1296 1298	1414 1415 1417	1507	1573 1574	1611 1611	20 30 40	1.3 2.0 2.7
	7 8	0564 0568	0787 0791	0985 0988	1156 1159	1300 1303	1419 1421	1510 1511	1575 1575 1576	1612 1612 1613	50 60	3·3 4.0
	9 10	0572	0794 0798	0991 0994	1161 1164	1305 1307	1422 1424	1513 1514	1577	1613	'	
	11	0580	0801	0997	1167	1309	1426	1515	1578	1613		
	12 13	0584 0588	0805 0808	1000 1003	1169 1172	1311 1314	1427 1429	1517 1518	1579 1579	1614 1614		
	14 15 16	0592 0595	0812 0815	1006 1009	1174 1177 1180	1316 1318	1431 1432	1519 1520 1522	1580 1581 1582	1615 1615 1615		
Ì	16 17	0599 0603	0819	1012	1180	1320 1322	1434 1436	1523	1583	1616		
	18 19	0607 0611	0826 0829	1018 1021	1185 1187	1325 1327	1438 1439	1524 1526	1583 1584	1616 1617	3	
	20	0615	0833	1024	1190	1329	1441	1527	1585	1617	10	.5
	2 I 22	0619 0623	0836 0840	1027 1030	1192 1195	1331 1333	1443 1444	1528 1529	1586 1586	1617 1617	20 30	1.0 1.5 2.0
	23	0626	0843	1033	1197	1335	1446	1530	1587 1588	1618 1618	40 50 60	2.5
	24 25	0630 0634	0846 0849	1036 1039	1200	1337 1339	1447	1531	1588	1618 1618		
	26 27	0638 0642	0853 0856	1042 1045	1205	1341 1343	1451	1534	1590	1618		
	28 29	0645 0649	0859 0863	1048 1051	1210 1212	1345 1347	1454 1455	1536 1537	1591 1591	1619 1619	ł	
	30	0653	o866	1054	1215	1349	1457	1 538	1592	1619		
	31 32	0657 0660	0869 0873	1057 1060	1217 1220	1351 1353	1459 1460	1539 1540	1593 1593	1619 1619 1620	2	
l	33 34	0664 0668	0876 0879	1062	1222	1355 1357	1462 1463	1541	1594	1620		
1	35 36	067 I 067 5	0882 0886	1068 1071	1227 1229	1359 1361	1465	1543 1545	1595 1596	1620 1620	10	-3
H	37	0679	0889	1074	1232	1363	1468	1546	159 7 1598	1620 1621	20 30	.7 1.0
	38 39	o683 o686	0892 0896	1076 1079	1234 1237	1365 1367	1470	1547 1548	1598	1621	40 50	1.3
ł	40	0690	0899	1082	1239	1369	1473	1 549	1599	1621	60	2.0
	41 42	0694 0697	0902 0906	1085 1088	1241 1244	1371 1373	1474 1476	1550 1551	1599 1600	1621 1621		
I	43 44	0701	0909	1090	1246 1249	1375 1377	1477	1552 1553	1600 1601	1621 1621		
	45 46	0708	0915	1096	1251 1253	1378 1380	1480 1481	1554	1601 1602	1621 1622		
	47	0716	0922	1102	1256	1382	1483	1556	1602	1622		
	48 49	0720 0723	0925 0929	1104 1107	1258 1261	1384 1386	1484 1486	1557 1558	1603 1603	1622 1622		1
	50	0727	0932	1110	1263	1388	1487	1559	1604	1622	10.	.2
	51 52	0731 0734	0935 0938	1113 1116	1265 1267	1390 1392	1488 1490	1560 1561	1604 1605	1622 1622	20 30	.3
	53	0738	0941	1118	1270 1272	1394 1396	1491 1493	1562 1563	1605 1606	1622 1622	40 50	.5
I	54 55 56	0741 0745 0749	0944 0947 0951	1121	1272 1274 1276	1397	1493 1494 1495	1564	1606	1622	60	1.0
	50 57 58	0752	0954	1130	1278	1399 1401	1497	1566	1607	1623		
	58 59	0756 0759	0957 0960	1132 1135	1281 1283	1403 1405	1498 1500	1567 1568	1608 1608	1623 1623		
	60	0763	0963	1138	1285	1407	1501	1569	1609	1623		
Į	1	_							_			

TABLE 11.

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n in English Feet.

Lat.	o°	Io	2 ⁰	3°	4°	5°.	6°	7°	8° .	9°	100	Р.	P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320		
0'	6875	6880	6893	6916	6947	6987	7036	7094	7160	7235	7319		
1 2 3	6875 6875 6875	6880 6880 6880	6893 6894 6894	6916 6917 6917	6948 6949 6949	6988 6989 6989	7037 7038 7039	7095 7096 7097	7161 7162 7164	7236 7238 7239	7320 7322 7323		
4 56	6875 6875 6875	6880 6881 6881	6894 6894 6895	6918 6918 6918	6950 6950 6951	6990 6991 6992	7040 7041 7041	7098 7099 7100	7165 7166 7167	7240 7241 7243	7325 7326 7327		
7 8 9	6875 6875 6875	6881 6881 6881	6895 6895 6896	6919 6919 69 20	6951 6952 6953	6993 6993 6994	7042 7043 7044	7101 7102 7103	7168 7170 7171	7244 7245 7247	7329 7330 7332		
10	6875	6881	6896	6920	6953	6995	7045	7104	7172	7248	7333		
11 12 13	6875 6875 6875	6881 6881 6882	6896 6897 6897	6920 6921 6921	6954 6955 6955	6996 6996 6997	7046 7047 7048	7105 7106 7107	7 ¹ 73 7 ¹ 74 7176	7249 7251 7252	7334 7336 7338		1
14 15 16	6875 6876 6876	6882 6882 6882	6898 6898 6898	6922 6922 6923	6956 6956 6957	6998 6999 6999	7049 7050 7050	7108 7109 7111	7177 7178 7179	7254 7255 7256	7339 7341 7342	10 20 30	.2 •3 •5
17 18 19	6876 6876 6876	6882 6883 6883	6899 6899 6900	6923 6924 6924	6957 6958 6959	7000 7001 7001	7051 7052 7053	7112 7113 7114	7180 7182 7183	7258 7259 7261	7343 7345 7346	40 50 60	.7 .8 1.0
20	6876	6883	6,000	6925	6959	7002	7054	7115	7184	7262	7348		
2 I 22 23	6876 6876 6876	6883 6883 6884	6900 6901 6901	6925 6926 6926	6960 6960 6961	7003 7004 7004	7055 7056 7057	7116 7117 7118	7185 7186 7188	7263 7265 7266	7350 7351 7353		
24 25 26	6876 6876 6876	6884 6884 6884	6901 6902 6902	6927 6927 6928	6962 6962 6963	7005 7006 7007	7058 7059 7060	7119 7120 7122	7189 7190 7191	7268 7269 7270	7354 7356 7358		
27 28 29	6876 6876 6876	6884 6885 6885	6902 6902 6903	6928 6929 6929	6964 6965 6565	7008 7008 7009	7061 7062 7063	7123 7124 7125	7192 7194 7195	7272 7273 7275	7359 7361 7362	、	
30	6876	6885	6903	6930	6966	7010	7064	7126	7196	7276	7364		
31 32 33	6877 6877 6877	6885 6886 6886	6903 6904 6904	6930 6931 6931	6967 6967 6968	7011 7012 7013	7065 7066 7067	7127 7128 7129	7197 7199 7200	7277 7279 7280	7366 7367 7368		
34 35 36	6877 6877 6877	6886 6887 6887	6905 6905 6905	6932 6932 6933	6969 6969 6970	7014 7015 7015	7068 7069 7070	7130 7131 7133	7201 7202 7204	7282 7283 7284	7370 7371 7373		
37 38 39	6877 6877 6877	6887 6887 6888	6906 6906 6907	6933 6934 6935	6971 6972 6972	7016 7017 7018	7070 7071 7072	7134 7135 7136	7205 7206 7208	7286 7287 7289	7374 7376 7377		2
40	6877	6888	6907	6935	6973	7019	7073	7137	7209	7290	7379		-
41 42 43	6877 6877 6877	6888 6888 6889	6907 6908 6909	6936 6936 6937	6974 6974 6975	7020 7021 7021	7074 7075 7076	7138 7139 7140	7210 7212 7213	7291 7293 7294	7381 7382 7384	10 20 30 40	.3 .7 1.0 1.3
44 45 4 ⁶	6877 6878 6878	6889 6889 6889	6909 6910 6910	6937 6938 6938	6976 6976 6977	7022 7023 7024	7077 7078 7079	7141 7142 7144	7214 7216 7217	7296 7297 7298	73 ⁸ 5 7387 73 ⁸ 9	50 60	1.7
47 48 49	6878 6878 6878	6889 68ço 6890	6910 6911 6911	6939 6939 6940	6978 6979 6979	7025 7025 7026	7080 7081 7082	7145 7146 7147	7218 7219 7221	7300 7301 7303	7390 7392 7393		
50	6878	6890	6911	6941	6980	7027	7083	7148	7222	7304	7395		
51 52 53	6878 6878 6879	6890 6891 6891	6912 6912 6913	6942 6942 6943	6981 6981 6982	7028 7029 7030	7084 7085 7086	7149 7150 7152	7223 7225 7226	7305 7307 7308	7397 7398 7400		
54 55 56	6879 6879 6879	6891 6892 6892	6913 6914 6914	6943 6944 6944	6983 6983 6984	7031 7032 7032	7087 7088 7090	7153 7154 7155	7227 7228 7230	73 10 73 1 1 73 1 3	7401 7403 7405		
57 58 59	6879 6880 6880	6892 6892 6893	6915 6915 6916	6945 6945 6946	6985 6986 6986	7033 7034 7035	7091 7092 7093	7156 7158 7159	7231 7232 7234	7314 7316 7317	7406 7408 7409		
60	688 0	6893	6916	6947	6987	7036	7094	7160	7235	7319	7411		

[Derivation of table explained on p. xlv.]

TABLE 11. LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm A} ~\rm IN~ ENGLISH~ FEET.$

Lat.	110	120	130	14°	1 5°	16°	17°	180	19°	20 ⁰		P. P.
	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320		
0/	7411	7511	7619	7736	7860	7992	8132	8279	8434	8595		
1 2 3	7413 7414 7416	7513 7514 7516	762 t 7623 7625	7738 7740 7742	7862 7864 7867	7994 7997 7999	8134 8137 8139	8282 8284 8287	8437 8439 8442	8598 8601 8603	}	
4 5 6	7417 7419	7518 7519	7627 7628	7744 7746	7869 7871	8001 8003	8142 8144	8289 8292	8444 8447	8606 8609		1
7	7421 7422 7424	7521 7523 7525	7630 7632 7634	774 ⁸ 7750 7752	7873 7875 7878	8006 8008 8010	8146 8149 8151	8295 8297 8300	8450 8452 8455	8612 8615 8617	10	.2
9 10	7425	7526	7636 7638	7754	7880 7882	8013	8154	8302 8305	8457 8460	8620	20 30	•3 •5
	7427	7528	<u> </u>	7756		8015	8156			8623	40 50	.7
11 12 13	7429 7430 7432	7530 7532 7533	7640 7642 7644	7758 7760 7762	7884 7886 7888	8017 8020 8022	8158 8161 8163	8307 8310 8312	8463 8465 8468	8626 8629 8631	60 	1.0
14 15 16	74 33 7435 7437	7 535 7537 7539	7646 7647 7649	7764 7766 7768	7890 7892 7895	8024 8026 8029	8166 8168 8170	8315 8317 8320	8471 8473 8476	8634 8637 8640		
17 18 19	7438 7440 7441	7541 7542 7544	7651 7653 7655	7770 7772 7774	7897 7899 7901	8031 8033 8036	8173 8175 8178	8322 8325 8327	8479 8482 8484	8643 8645 8648		
20	7443	7546	7657	7776	7903	8038	8180	8330	8487	8651		
21	7445	7548	7659	7778	7905	8040	818z	8333	8490	8654		
22 23 24	7446 7448 7450	7550 7551 75 5 3	7661 7663 7665	7780 7782 7784	7907 7910 7912	8043 8045 8047	8185 8187 8190	8335 8338 8340	8492 8495 8498	8657 8659		
25 26	7451 7453	7555 7557	7666 7668	7786 7789	7914 7916	8049 8052	8192 8195	8343 8346	8500 8503	8662 8665 8668	-	2
27 28 29	7455 7457 745 ⁸	7559 7560 7562	7670 7672 7674	7791 7793 7795	7918 7921 7923	8054 8056 8059	8197 8200 82-2	8348 8351 8353	8506 8509 8511	8673 8673 8676	10 20	-3
30	7460	7564	7676	7797	7925	8061	8205	8356	8514	8679	20 30 40	.7 1.0 1.3
31 32 33	7462 7463 7465	7566 7568 7569	7678 7680 7682	7799 7801 7803	7927 7929 7932	8063 8066 8068	8207 8210 8212	8358 8361 8363	8517 8519 8522	8682 8685	50 60	1.7 2.0
34	7466	757I	7684	7805	7934	8071	8215	8366	8525	8687 8690		
35 36	7468 7470	7573 7575	7686 7688	7807 7810	7936 7938	8073 8075	8217 8219	8368 8371	8527 8530	8693 8696		
37 38 39	7471 7473 7474	7577 7578 7580	7690 7692 7694	7812 7814 7816	7940 7943 7945	8078 8080 8083	8222 8224 8227	8373 8376 8378	8533 8536 8538	8699 8701 8704		
40	7476	7582	7696	7818	7947	8085	8229	8381	8541	8704		
41	7478	7584	7698	7820	7949	8087	8231	8384	8544	8710		
42 43	7479 7481	75 ⁸⁶ 75 ⁸⁸	7703 7702	7822 7824	7952 7954	8090 8092	8234 8236	8386 8389	8546 8549	8713 8715		
44 45	7483 7484	7590 7591	7704 7706	7826 7828	7956 7958	8094 8096	8239 824 t	8391 8394	8552	8718		
46	7486	7593	7708	7831	7961	8099	8244	8397	8554 8557	8721 8724		3
47 48 49	7488 7490 7491	7595	7710 7712	7833 7835	7963 7965	8101 8103	8246 8249	8399 8402	8560 8563	87 27 8729	10	.5
50	7491 7493	7599 7601	7714 7716	7 ⁸ 37 7 ⁸ 39	7968 7970	8108 ·	8251 8254	8404 8407	8565 8568	8732 8735	20 30 40	1.0 1.5 2.0
51	7495	7603	7718	784 I	7972	8110	8256	8410	8571	8738	50 60	2,5
52 53	7497 749 ⁸	7605 7606	7720 7722	7 ⁸ 43 7 ⁸ 45	7974 7977	8113 8115	8259 8261	8412 8415	8573 8576	8741 8743		
54 55 56	7500 7502 7504	7608 7610 7612	7724 7726 7728	7847 7849	7979 7981	8118 8120 8120	8264 8266	8418 8420	8579 8581	8746 8749		
57	7506	7614	7730	7852 7854	79 ⁸ 3 7985	8122 8125	8269 8271	8423 8426	8584 8587	8752 8755		
58 59	7507 7 5 09	7615 7617	7732 7734	7856 7858	7988 7990	8127 8130	8274 8276	8429 8431	8590 8592	8757 8760		
60	7511	7619	7736	7860	7992	8132	8279	8434	8595	8763		
	ONIAN T					_				i		

[Derivation of table explained on p. xlv.]

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENGLISH FEET. [Derivation of table explained on p. xlv.]

TABLE 11. LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n IN ENGLISH FEET.

Lat.	31°	32°	33°	34°	35°	360	37°	3 ^{8°}	39° .	40°		P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0′	0777	1006	1239	1476	1716	1959	2205	2453	2704	2956		
1 2 3	0781 0785 0789	1010 1014 1018	1243 1247 1251	1480 1484 1488	1720 1724 1728	1963 1967 1971	2209 2213 2217	2457 2462 2466	2708 2712 2716	2961 2965 2969		3
4 56	0793 0796 0800	1022 1026 1029	1255 1259 1263	1492 1496 1500	1732 1736 1740	1975 1979 1983	2221 2226 2230	2470 2474 2478	2721 2725 2729	2973 2978 2982	10	.5
7 8 9	0804 0808 0811	1033 1037 1041	1267 1271 1275	1504 1508 1512	1744 1748 1752	1988 1992 1996	2234 2238 2242	2482 2487 2491	2733 2737 2742	2986 2990 2994	20 30 40	1.0 1.5 2.0
10	0815	1045	1279	1516	1756	2000	2246	2495	2746	2999	50 60	2.5 3.0
11 12 13	0819 0823 0827	1049 1053	1282 1286	1520 1524	1760 1764	2004 2008	2250 2254	2499 2503	2750 2754	3003 3007		
13 14 15 16	0830 0834	1057 1050 1064	1290 1294 1298	1528 1532 1536	1768 1772 1776	2012 2016 2020	2259 2263 2267	2507 2512 2516	2758 2763 2767	3011 3016 3020		
17 18	0838 0842 0846	1072 1076	1302 1306 1310	1540 1544 1548	1780 1784 1789	2024 2028 2033	2271 2275 2279	2520 2524 2528	2771 2775 2779	3024 3028 3032		
19 20	0849	1080 	1314	1552	1793	2037	2283	2532	2784	3037		
20	0853 0857	1084	1318	1556	1797	2041	2287	2537	2788	3041		
22 23	0861 0865	1091 1095	1326 1330	1564 1568	1805 1809	2045 2049 2053	2292 2296 2300	2541 2545 2549	2792 2796 2800	3045 3049 3054		4
24 25 26	0869 0872 0876	1099 1103 1107	1334 1337 1341	1572 1576 1580	1813 1817 1821	2057 2061 2065	2304 2308 2312	2533 2557 2562	2805 2809 2813	3058 3062 3066	10	.7
27 28 29	0880 0884 0888	1111 1115 1118	1345 1349 13 ₅ 3	1584 1588 1592	1825 1829 1833	2059 2073 2077	2316 2321 2325	2 66 2570 2574	2817 2822 2826	3071 3075 3079	20 30 40 50	1.3 2.0 2.7 3.3
30	0 891	1122	1357	1596	1837	2082	2329	2578	2830	3083	60	4,0
31 32 33	0895 0899 0903	1126 1130 1134	1361 1365 1369	1600 1604 1608	1841 1845 1849	2086 2090 2094	2333 2337 2341	2583 2587 2591	2834 2838 2843	3087 3092		
34 35 36	0907 0910 0914	1138 1142 1146	1373 1377 1381	1612 1616 1620	1853 1857 1861	2098 2102 2106	2345 2350	2595 2599	2847	3096 3100 3104		
37 38	0918 0922	1150 1153	1385 1389	1624 1628	1865 1870	2110 2114	2354 2358 2362	2603 2608 2612	2855 2859 2864	3109 3113 3117		
39 40	0926	1157	1393	1632	1874 1878	2119	2360	2516	2868	3121		
41	0933	1165	1401	1640	1882	2127	2370	2520	2876	3120		
42 43 44	0937 0941 0945	1169 1173 1177	1405 1409 1412	1644 1648 1652	1886 1890 1894	2131 2135 2139	2379 2383 2387	2629 2633 2637	2880 2885 2889	3134 3138		5
45 46	0949 0953	1181 1185	1416 1420	1656 1660	1898 1902	2143 2147	2391 2395	2641 2645	2893 2897	3143 3147 3151	10 20	.8 - 1.7
47 48 49	0956 0950 0964	1189 1192 1196	1424 1428 1432	1664 1668 1672	1906 1910 1914	2151 2156 2160	2399 2403 2408	2649 2654 2658	2902 2906 2910	3155 3160 3164	30 40 50	2.5 3.3 4.2
50	0958	1200	1436	1676	1918	2164	2412	2662	2914	3168	60	5.0
51 52 53	0972 0976 0979	1204 1208 1212	1440 1444 1448	1680 1684 1688	1922 1)26 1)31	2168 2172 2176	2416 2420 2424	2666 2670 2675	2918 2923 2927	3172 3177 3181		
54 55 56	0983 0987 0991	1216 1220 1224	1452 1456 1460	1692 1696 1700	1935 1939 1 43	2180 2184 2188	2428 2433 2437	2679 2683 2687	2931 2935	3185 3189		
57 58 59	0995 0999 1003	1228 1231 1235	1464 1468 1472	1704 1708 1712	1947 1951	2193 2197	244I 2445	2691 2696	2940 2944 2948	3193 3198 3202		f.
80	1005	1233	1472	1712	1955	2201 2205	2449 2453	2700 2704	2952 2956	3206 3210		
		ABLES.										

[Derivation of table explained on p. xlv.]

TABLE 11.

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n in English Feet.

							,		•			
Lat.	41 ⁰	42 ⁰	43°	44°	45°	46°	47°	48°	49°	50°		P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
0⁄	3210	3466	3722	3979	4236	4494	4751	5007	5263	\$517		
1 2	3215 3219	3470 3474	3726 373 I	3983 3988	4241 4245	4498 4502	4755 4760	5012 5016	\$267 5271	5522 8526		
3	3223	3479	3735	3992	4249	4507	4764	5020	5276	5530		
45	3227 3232	34 ⁸ 3 34 ⁸ 7	3739 3744	3996 4001	4254 4258	4511 4515	4768 4772	5024 5029	5280 5284	5534 5538		
5 6	3236	3491	3744 374 ⁸	4005	4262	4520	4777	5033	5288	5543		
7 8	3240 3244	3496 3500	3752 3756	4009 4013	4267 4271	4524 4528	4781 4785	5037 5042	5293 5297	5547 5551		
9	3249	3504	3761	4018	4275	4532	4789	5046	5301	5555	ļ	
10	3253	3508	3765	4022	4279	4537	4794	5050	5305	5560		
11 12	3257 3261	3513 3517	3769 3774	4026 403 I	4284 4288	4541 4545	4798 4802	5054 5039	53 10 53 14	5564 5568		
13	3266	3521	3778	4035	4292	4550	4807	5063	5318	5\$72		4
14 15	3270 3274	3526 3530	3782 3786	4039 4043	4297 4301	4554 4558	4811 4815	5067 5071	5322 5327	5576 5581		T[
16	3278	3534	3791	4048	4305	4562	4819	5076	533 I	5585	10 20	.7 1.3
17 18	3283 3287	353 ⁸ 3543	3795 3799	4052 4056	4309 4314	4367 4571	4824 4828	5080 5084	5335 5339	5589 5393	30 40	2.0
19	3291	3547	3803	4061	4318	4575	4832	5088	5344	5598	50 60	3·3 4.0
20	3295	3551	3808	4065	4322	4580	4837	50.93	5348	\$602		· · ·
21 22	3300 3304	3555 3560	3812 3 ⁸ 16	4069 4073	4327 4331	45 ⁸ 4 45 ⁸⁸	4841 4845	5097 5101	5352 5356	5606 5610		
23	3308	3564	3821	4078	4335	4592	4849	5105	5361	<u>5</u> 614		
24 25	3312 3317	3568 3573	3825 3829	4082 4086	4339 4344	4597 4601	4854 4858	5110 5114	5365 5369	5619 5623		
26 27	3321 3325	3577 3581	3833 3838	4091	4348	4605 4610	4862 4866	5118 5123	5373 - 5378	5627 5631		
28	3329	3585	3842	4095 4099	4352 4357	4614	4871	\$127	5382	5636		
29 30	3334 3338	3590	3846 3851	4104 4108	4361 4365	4618	4875 4879	5131	5386 5390	5640 5644		
		3594				4627	4884			5648		
31 32	3342 3347	3598 3602	3855 3859	4112 4116	4369 4374	4631	4888	5140 5144	5395 5399	5652		
33 34	3351 3355	3607 36111	3863 3868	4121 4125	4378 4382	4635 4640	4892 4896	5148 5152	5403 5407	5657 5661		
35 36	3359	3615 3620	3872 3876	4129	4387 4391	4644 4648	4901 4905	\$157 5161	5412 5416	5665 5669		
1 1	3364 3368	3624	3881	4134 4138	4395	4652	4903	5165	\$420	5673		5
37 38 39	3372 3376	3628 3632	3885 3889	4142 4146	4399 4404	4657 4661	4913 4918	\$169 \$174	5424 5428	5678 5682		0
40	3381	3637	3893	4155	4408	4665	4922	5178	5433	5686	10	.8
41	3385	3641	3898	4155	4412	4670	4926	5182	\$437	5690	20 30	1.7 2.5
42	3389	3645	3902	4159	4417	4674 4678	493 I	5186	544 I	5694	40 50	3·3 4.2
43 44	3393 3398	3649 3654	3906 3911	4164 4168	4421 4425	4670 4682	4935 4939	5191 5195	5445 5450	\$699 \$703	бo	5.0
45 46	3402 3406	3658 3662	3915	4172 4176	4430 4434	4687 4691	4943 4948	5199 5203	5454 5458	5707 5711		
40	3410	3667	3919 3923	41/0	4434	4695	4952	5208	5462	5716		
48 49	3415 3419	3671 3675	3928 3932	4185 4189	4442 4447	4700 4704	4956 4960	5212 5216	5467 5471	5720 5724		
50	3423	3679	3935	4194	4451	4708	4965	5220	5475	5728		
ŀ				4194 4198		4712	4969	5225	5479	\$732		
51 52	3427 3432	3684 3688	3941 3945	4202	4455 4460	4717	4973	5229	5484	5737		
53 _. 54	3436 3440	3692 3697	3949 3953	4206 4211	4464 4468	472 I 4725	4978 49 ⁸ 2	5233 5237	5488 5492	5741 5745		
55	3445	3701	3958	4215	4472	4730	4986	5242 5246	5496 5500	5749		
56 57	3449 3453	3705 3709	3962 3966	4219	4477 448 t	4734 4738	4990 4995	5250	5505	5753 5758		
58 59	3457 3462	3714 3718	3971 3975	4228 4232	4485 4490	4742 4747	4999 5003	5254 5259	5509 5513	5762 5766		
60 60	3462	3710		4232	4494	4751	5007	5263	5517	5770		
	3400	5/22	3979	4-30	94¥9	4/3*	5-07	5-03	334/	3770		

[Derivation of table explained on p. xlv.]

TABLE 11. LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_n \text{ IN ENCLISH FEET.}$

Lat.	510	52°	53°	54 [°]	55°	56°	57°	58°	59°	60°		P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	-	
0′	5770	6021	6270	6517	6760	7001	7238	7472	7701	7927		
1 2	5774 5778	6025 6029	6274 6278	6521 6525	6764 6768	7005 7009	7242 7246	7476 7480	7705 7709	7931 7934		
3	57 ⁸ 3	6034	6282	6529	6772	7013	7250	7483	7712	7938	[5
4 5 6	57 ⁸ 7 5791 5795	6038 6042 6046	6286 6290 6295	6533 6537 6541	6776 6780 6785	7017 7021 7025	7254 7257 7261	7487 7491 7495	7716 7720 7724	7942 7945 7949		
78	5799	6050	6299	6545	6789	7029	7265	7499	7728	7953	10 20	.8 1.7
9	5804 5808	6055 6059	6303 6307	6549 655 3	6793 6797	7033 7037	7269 7273	7502 7506	7731 7735	7957 7960	30 40	2.5 3-3
10	5812	6063	6311	6557	680 i	7041	7277	7510	7739	7964	50 60	4.2 5.0
11 12	5816 5820	6067 6071	6315 6319	6561 6565	6805 6809	7045 7049	7281 7285	7514 7518	7743 7747	7968 7971		·
13 14	5825 5829	6075 6079	6324 6328	6569 6573	6813 6817	7053 7057	7289 7293	7522 7526	7750 7754	7975 7979		
15 16	5833 5837	6083 6088	6332 6336	6577 6582	682 I 6825	7060 7064	7296 7300	7529 7533	7758 7762	7982 7986		4
17 18	5841 5846	6092 6096	6340 6345	6586 6590	6829 6833	7068 7072	7304 7308	7537 754 I	7766 7769	79 90 7994		
19 20	5850	6100	6349	6594 6598	6837 6841	7076 7080	7312	-7545	7773	7997 8001		
21	5 ⁸ 54 5858	6104 6108	6353 6357	6602	6845	7084	7316	7549	7777	8005		
22 23	5862 5867	6112 6117	6361 6365	6606 6610	6849 6853	7088 7092	7324 7328	7552 7557 7560	7785 7788	8008 8012		
24 25	5871 5875	6121 6125	6369 6373	6614 6618	6857 6861	7096 7100	7332 7335	7564 7568	7792 7796	8016 8019		4
26	5 ⁸ 79	6129	6378	6623	6865 6869	7104	7339	7572	7800	8023	10	.7
27 28 29	5883 5888 5892	6133 6138 6142	6382 6386 6390	6627 6631 6635	6873 6877	7108 7112 7116	7343 7347 7351	7576 •7579 75 ⁸ 3	7804 7807 7811	8027 803 1 803 4	20 30	1.3 2.0
30	5896	6146	6394	6639	6881	7120	7355	7587	7815	8038	40 50 60	2.7 3.3 4.0
31	5900	6150	6398	6643	6885	7124	73 59	7591	7819	8042		4.0
32 33	5904 5909	6154 6158	6402 6406	6647 6651	6889 6893	7128 7132	7363 7367	7595 7598	7822 7826	8045 8049		
34 35	5913 5917	6162 6166	6410 6414	6655 6659 6663	6897 6901	7136 7139	7371 7374	7602 7606 7610	7830 7833	8053 8056		
36 37	5921 5925	6171 6175	6419 6423	6667	6905 6909	7143 7147	7378 7382	7614	7837 7841	8060 8064		-
38 39	5930 5934	6179 6183	6427 6431	6671 6675	6913 6917	7151 7155	7386 7390	7617 7621	7845 7848	8068 807 I		1
40	5938	6187	6435	6679	6921	7159	7394	7625	7852	8075		
41 42	5942 5946	6191 6195	6439 6443	6683 6687	6925 6929	7163 7167	7398 7402	7629 7633	7856 7860	8079 8082		
43	5951	6200	6447	6691	6933	7171	7406	7636	7863	8086		8
44 45	5955 5959	6204 6208	6451 6455	6695 6699	6937 6941	7175	7410 7413	7640 7644	7867 7871	8089 8093		
46 47	5963 5967	6212 6216	6460 6464	6704 6708	6945 6949	7183 7187	7417 7421	7648 7652	7875 7879	8097 8100	10 20	-5 1.0
47 48 49	5972 5976	6221 6225	6468 6472	6712 6716	6953 6957	7191 7195	7425 7429	7655 7659	7882 7886	8104 8107	30 40	1.5 2.0
50	5980	6229	6476	6720	6951	7 199	7433	7663	7890	8111	50 60	2.5 3.0
51	5984 5988	6233	6480	6724	6965	7203	7437	7667	7894	8115		
52 53	5992	6237 6241	6484 6488	6728 6732	6969 6973	7207 7211	7441 7445	7671 7674	7897 7901	8118. 8122		
54 55	5996 6000	6245 6249	6492 6496	6736 6740	6977 6981	7215 7218	7449 7452	7678 7682	7905 7908	8126 8129		
55 56	6005 6009	6254 6258	6501 6505	6744 6748	6985 6989	7222 7226	7456 7460	7686 7690	7912	8133		
57 58 59	6013 6017	6262 6266	6509 6513	6752 6756	6993 6997	7230 7234	7464 7468	7693 7697	7916 7920 79 2 3	8137 8141 8144		
60	6021	6270	6517	6760	7001	7238	7472	7701	7923	8148		
l												

[Derivation of table explained on p. xlv.]

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION ρ_n in English feet.

Lat.	61°	62°	63°	64°	65°	66°	67°	68°	69°	70 ⁰]	P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	_	
0/	8148	8364	8575	8781	8982	9176	9365	9548	9724	9893		
1 2	8152 8155	8368 8371	8578 8582	8784 8788	8985 8989	9179 9182	9368 937 I	9551 9554	9727 9730	9896 9898		
3	8159	8375	8585	8791	8992	9186	9374	9557	9732	9901		
4 5 6	8162 8166 8170	8378 8382 8386	8589 8592 8596	8795 8798 8801	8995 8998 9002	9189 9192 9195	9377 9380 9384	9560 9562 9565	9735 9738 9741	9904 9906 9909		
7 8 9	8173 8177 8180	8389 8393 8396	8599 8603 8606	8805 8808 8812	9005 9008 9012	9198 9202 9205	9387 9390 9393	9568 957 I 9574	9744 9746 9749	9912 9915 9917		4
10	8184	8400	8610	8815	9015	9208	9396	9577	9752	9920	10	.7
11 12	8188 8191 8195	8403 8407 8410	8613 8617 8620	8818 8822 8825	9018 9021 9025	9211 9214 9218	9399 9402 9405	9580 9583 9586	9755 9758 9761	9923 9926 9928	20 30 40	1.3 2.0 2.7
13 14	8195	8414	8624	8829	9025	9210	9405	9589	9764	9920	50 60	3.3 4.0
15 16	8202 8206 8209	8417 8421 8424	8627 8631 8634	8832 8835 8839	9031 9034	9224 9227	9411 9415 9418	9592 9595 9598	9766 9769	9934 9937 9940		
17 18 19	8213 8216	8424 8428 8431	8638 8641	8842 8846	9037 9041 9044	9230 9234 9237	9418 9421 9424	9598 9601 9604	9772 9775 9778	9940 9942 9945		
20	8220	8435	8645	8849	9047	9240	9427	9607	9781	9948		
21 22 23	8224 8227 823 1	8438 8442 8445	8648 8652 8655	8852 8856 8859	9050 9054 9057	9243 9246 9250	9430 9433 9436	9610 9613 9616	9784 9787 9789	9951 9953 9956		
24 25 26	8235 8238 8242	8449 8452 8456	8659 8662 8665	8862 8865 8869	9060 9063 9067	9253 9256 9259	9439 9442 9445	9619 9621 9624	9792 9795 9798	9959 9961 9964		3
27 28 29	8246 8250 8253	8459 8463 8466	8669 8672 8676	8872 8875 8879	9070 9073 9077	9262 9266 9269	9448 945 I 9454	9627 9630 9633	9801 9803 9806	9967 9970 9972	10 20	•5 1.0
30	8257	8470	8679	8882	9080	9272	9457	9636	9809	9975	30 40	1.5 2.0
31 32	8261 8264 8268	8473 8477 8480	8682 8686 8689	8885 8889 8892	9083 9086	9275 9278 9281	9460 9463 9466	9639 9642	9812 9815 9817	9978 9980 9983	50 60	2.5 3.0
33 34	8271	8484	8693	8896	9090 909 3	9284	9469	9645 9648	9820	9986		
35 36	8275 8279	8487 8491	8696 8699	8899 8902	9096 9099	9287 9291	9472 9475	965 I 9654	9823 9826	9988 9991		
37 38 39	8282 8286 8289	8494 8498 8501	8703 8706 8710	8906 8909 8913	9102 9106 9109	9294 9297 9300	9478 9481 9484	9657 9660 9663	9829 9831 9 ⁸ 34	9994 9997 9999		
40	8293	8505	8713	8916	9112	9303	9487	9666	9837	*0002	·	
41	8296	8508	8716	8919	9115	9306	9490	9669	9840	*0005	1	
42 43	8300 8303	8512 8515	8720 8723	8923 8926	9118 9122	9309 9312	9493 9496	9672 9675	9843 9845	*0007	1	2
44	8307 8310	8519 8522	8727 8730	8929 8932	9125 9128	9315 9318	9499 9502	9678 9680	9848 9851	*0013	10	
45 46	8314	8526	8733	· 8936	9131	9322	9506	9683	9854	*0018	20	·3 .7 1.0
47 48 49	8317 8321 8324	8529 8533 8536	8737 8740 8744	8939 8942 8946	9134 9138 9141	9325 9328 9331	9509 9512 9515	9686 9689 9692	9857 9859 9862	*0021 *0024 *0026	30 40 50 60	1.3 1.7 2.0
50	8328	8540	8747	. 8949	9144	9334	9518	9695	9865	*0029]	<u> </u>
51	8332	8543	8750	8952	9147	9337	9521	9698	9868 9871	*0032 *0034		
52 53	8335 8339	8547 8550	8754 8757	8956 8959	9150 9154	9340 9343	9524 9527	9701 9704	9873	*0034		
54	8342 8346	8554 8557	8761 8764	8962 8965	9157 9160	9346 9349	9530 9533	9707 9709	9876 9879	*0039 *0042	1	
55 56	8350	8561	8767	8969	9163	9353	9536	9712	9882	*0045		
57 58 59	8353 8357 8360	8564 8568 857 I	8771 8774 8778	8972 8975 8979	9166 9170 9173	9356 9359 9362	9539 9542 9545	9715 9718 9721	9885 9887 9890	*0047 *0050 *0052		
60	8364	8575	8781	8982	9176	9365	9548	9724	9893	*0055		
L												

[Derivation of table explained on p. xlv.]

TABLE 11. LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_n \text{ IN ENCLISH FEET.}$

Lat.	71°	72 ⁰	73°	74 [°]	75°	76°	77°	78°	79°	80°		P. P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
0′	0055	0210	0359	0499	0632	0757	0875	0984	1085	1177		
1 2 3	00 58 0060 0063	0213 0215 0218	0361 0364 0366	0501 0504 0506	0634 0636 0639	0759 0761 0763	0877 0879 0880	0986 0987 0989	1087 1088 1090	1178 1180 1181		
5 4 56	0066 0068	0220 0223	0369 0371	0508 0510	0641 0643	0765 0767	0882 0884	0991 0992	1091 1093	1 183 1 184	ĺ	3
7 8	0071 0074 0077	0226 0228 0231	0373 0376 0378	0513 0515 0517	0645 0547 0650	0769 077 I 0773	0886 0888 0889	0994 0996 0998	1095 1096 1098	1186 1187 1189	10	5
9	0079	0233	0381	0520	0652	°775	0891	0999	1099	1190	20 30	1.0 1.5
10	0	0236	0383	0522	0654	<u> 0777</u>	0893	1001	1101	1 192	40 50 60	2.0 2.5
11 12 13	0085 0087 0090	0238 0241 0243	0385 0388 0390	0524 0526 0529	0656 0658 0660	0779 0781 0783	0895 0897 0899	1003 1004 1006	1 102 1 104 1 105	1193 1195 1196		3.0
14 15 16	0092 0095 0098	0246 0248 0251	0392 0394 0397	053 I 0533 0535	0662 0664 0667	0785 0787 0789	0901 0902 0904	1003 1003 1008	1107 1108 1110	1198 1199 1200		
17 18 19	0100 0103 0105	0253 0256 0258	0399 0401 0404	0537 0540 0542	0669 0671 0673	0791 0793 0795	0906 0908 0910	1013 1015 1016	1111 1113 1114	1202 1203 1205		
20	0108	0261	0406	0544	0675	0797	0912	8101	1116	1206		
21 22	0111 0113	0263 0266	0408 0411	0546 0549	0677 0679	0799 0801	0914 0916	1020 1021	1118 1119	1207 1209		
23 24 25	0116 0118 0121	0268 0271 0273	0413 0416 0418	0551 0553 0555 0558	068 x 0683 0685	0803 0805 0807	0917 0919 0921	1023 1025 1026	1 121 1 122 1 124	1210 1212 1213		2
26 27	0124 0126	0276 0278	0420 0423	0558 0560	0688 0690	0809	0923 0925	1028 1030	1126	1214 1216		
28 29	0129 0131	0281 0283	0425 0428	0562 0565	0692 0694	0813 0815	0926 0928	1032 1033	1129 1130	1217 1219	10 20 30	·3 ·7 1.0
30	0134	0286	0430	0567	6	0817	0930	1035	1132	1220	40 50	1.3 1.7
31 32 33	0137 0139 0142	0288 0291 0293	0432 0435 0437	0569 0571 0574	0698 0700 0702	0819 0821 0823	0932 0934 0935	1037 1038 1040	1133 1135 1136	1221 1223 1224		2.0
34 35	0144 0147	0296 0298	0439 0441	0576 0578	0704 0706	0825 0826	0937 0939	1042 1043	1138 1139	1226 1227		
35 36	0150	0300	0444 0446	0580 0582	0708	0828 0830	0941	1045	1141	1228		
37 38 39	0152 0155 0157	0303 0305 0308	0448 0451	0582 0585 0587	0710 0712 0714	0830 0832 0834	0943 0944 0946	1047 1049 1050	1142 1144 1145	1230 1231 1233		
40	0160	0310	0453	0589	0716	0836	0948	1052	1147	1234		
41 42 43	0162 0165 0167	0312 0315 0317	0455 0458 0460	0591 0593 0596	0718 0720 0722	0838 0840 0842	0950 0952 09 5 3	1054 1055 1057	1148 1150 1151	1235 1237 1238		
44	0170 0172	0320	0462 0464	0598 0600	0724	0844	0 95 5	1058	1153	1240		
45 46	0175	0322 0324	0467	0602	0726 0729	0846 0848	0957 0959	1060 1062	1154 1156	1241 1242		1
47 48 49	0177 0180 0182	0327 0329 0332	0469 0471 0474	0604 0607 0609	0731 0733 0735	0850 0852 0854	0961 0962 0964	1063 1065 1066	1157 1159 1160	1244 1245 1247	10 20	.2 .3
50	0185	0334	0476	0611	0737	0856	0966	1068	1 162	1248	30 40	•5 •7
51 52	0187	0336	0478 0481	0613 0615	0739	0858 0860	0968	1070	1163	1249	50 60	8. 1.0
53	0192	0339 0341	0483	0617	0741 0743	0862	0970 0971	1071 1073	1165 1166	1251 1252		<u> </u>
54 55	0195	0344 0346	0485 0487	0619 0621	0745 0747	0864 0865	0973 0975	1075 1076	1168 1169	1253 1254		
56 57	0200 0202	0349 0351	0490 0492	0624 0626	0749 0751	0867 0869	0977 0979	1078 1080	1171 1172	1256		
58 59	0205 0207	0354 0356	0494 0497	0628 0630	0753 0755	0871 0873	0980 0982	1082 1083	1172 1174 1175	1257 1258 1260		
60	0210	03 5 9	0499	0632	0757	0875	0984	1085	1177	1261		
L							1					

[Derivation of table explained on p. xlv.]

SMITHSONIAN TABLES.

зř.

TABLE 11.

LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm n}$ in Enclish feet.

[Derivation of table explained on p. xlv.]

1											
Lat.	810	82°	83°	84°	85°	86°	87°	88°	89°		P. P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
0′	1261	1337	1403	1461	1511	1551	1583	1605	1619		
1 2	1262 1264	1338 1339	1404 1405	1462 1463	1512 1512	1552 1552	1583 1584	1605 1606	1619 1619		
3	1265	1340	1406	1464	1513	1553	1584	1606	1619		
4 5 6	1266 1267	1341 1342	1407 1408	1465 1465	1514 1514	1553 1554	1585 1585	1606 1606	1619 1619		
	1269 1270	1344 1345	1410 1411	1466 1467	1515 1516	1555 1555	1585 1586	1607 1607	1620 1620		
7 8 9	1271 1273	1346 1347	1412 1413	1468 1469	1517	1556	1586 1587	1607 1608	1620 1620		
9 10	1273	1348	1413	1409	1518	1557	1587	1608	1620		
11	1275	1349	1415	1471	1519	1558	1587	1608	1620		
12 13	1277 1278	1350 1352	1416 1417	1472 1473	1519 1520	1558 1559	1588 1588	1609 1609	1620 1620		2
14 15	1279 1280	1353	1418 1419	1474	1521 1521	1559 1560	1589 1589	1609 1609	1620 1620		
15	1282	1354 1355	1419	1474 1475	1521	1561	1589	1610	1621	10	-3
17 18 19	1283 1284 1286	1356 1358 1359	1421 1422 1423	1476 1477 1478	1523 1524 1524	1561 1562 1562	1590 1590 1591	1610 1610 1611	1621 1621 1621	20 30 40	.7 1.0 1.3
20	1287	1360	1424	1479	1525	1563	1591	1611	1621	50 60	1.7 2.0
21	1288	1361	1425	1480	1526	1563	1591	1611	1621		·
22 23	1290 1291	1362 1363	1426 1427	1481 1481	1526 1527	1564 1564	1592 1592	1611 1612	1621 1621		
24 25	1292 1293	1364 1365	1428 1429	1482 1483	1528 1528	1565 1565	1593 1593	1612 1612	1621 1621		
26 27	1295 1296	1367 1368	1430 1431	1484 1485	1529 1530	.1566 1566	1593 1594	1612 1612	1622 1622		
28 29	1297 1299	1369 1370	1432 1433	1485 1486	1531	1567 1567	1594	1613 1613	1622 1622		
30	1300	1371	1434	1487	1532	1568	1595	1613	1622		
31	1301	1372	1435	1488 1489	1533	1568	1595	1613 1613	1622 1622		
32 33	1302 1304	1373	1436 1437	1489	1533 1534	1569 1569	1596 1596	1613	1622		
34 35	1305 1306	1375 1376	1438 1438	1490 1491	1535 1535	1570 1570	1597 1597	1614 1614	1622 162 2		
36	1307	1378	1439	1492	1536	1571	1597	1614	1623		1
37 38	1308 1310	1379	1440 1441	1493 1493	1537 1538	1571 1572	1598 1598	1614 1615	1623 1623		<u>ل</u>
39	1311	1381	1442	1494	1538	1572	1599	1615	1623	10	.2
40	1312	1382	1443	1495	1539	1573	1599	1615	1623	20 30	•3 •5
41 42	1313	1383 1384	1444 1445	1496 1497	1540 1540	1573 1574	1599 1600	1615 1615	1623 1623	40 50	•7 .8
43	1316	1385 1386	1446	1497 1498	1541	1574	1600 1600	1616 1616	1623 1623	60	1.0
44	1317	1387	1447 1447	1499	1541 1542	1575 1575	1600	1616	1623		
46 47	1320 1321	1389 1390	1448 1449	1500	1543 1543	1576	1601 1601	1616. 1616	1623 1623		
48 49	1322 1324	1391	1450	1501	1544 1544	1577	1601 1602	1617 1617	1623 1623		
50	1325	1393	1451	1503	1545	1578	1602	1617	1623		
51	1326	1394	1453	1504	1546	1578	1602	1617	1623		
52 53	1327 1329	1395 1396	1454 1455	1505 150 5	1546 1547	1579 1579	1603 1603	1617 1618	1623 1623		
54	1330 1331	1397 1398	1456 1456	1506 1507	1547 1548	1580 1580	1603 1603	1618 1618	1623 1623		
55 5 6	1332	1399	I457	1 508	1549	1581	1604	1618	1623		
57 58	1333 1335	1400 1401	1458 1459	1509 1509	1549 1550	1581 1582	1604 1604	1618 1619	162 3 1623		
59	1336	1402	1460	1510	1550	1582	1605	1619	1623		
60	1337	1403	1461	1511	1551	1583	1605	1619	1623		
		<u></u>		<u> </u>	<u>.</u>						

TABLE 12. LOCARITHMS OF RADIUS OF CURVATURE ρ_a (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.

Azimuth.					LAT	TUDE.				
	22 ⁰	23°	24 ⁰	25°	26°	27 ⁰	28°	29 ⁰	30°	31°
0 ⁰	6.80237	6.80242	6.80248	6.80254	6.80260	6.80266	6.80272	6.80279	6.80285	6.80292
5	239	244	250	256	262	268	274	280	287	294
10	244	250	255	261	267	273	279	285	292	298
15	254	259	264	270	276	282	288	294	300	306
20	266	271	277	282	288	293	299	305	31 1	317
25	282	287	292	297	302	308	31 3	319	32 5	331
30	300	305	309	314	319	324	330	335	340	346
35	320	324	329	333	338	343	348	353	358	363
40	341	345	350	354	358	362	367	372	377	382
45	364	3 ⁶⁷	371	375	379	383	387	391	396	400
50	386	389	392	396	399	403	407	411	415	419
55	407	410	41 3	416	420	423	426	430	434	437
60	427	430	432	435	438	442	445	448	451	455
65	445	448		453	455	458	461	464	467	470
70	461	463		468	470	473	47 5	478	481	484
75	473	476		480	482	484	487	489	492	494
80	483		487	489	491	493	495	498	500	50 2
85	489		492	494	496	498	501	503	505	507
90	490		494	496	498	500	502	504	507	509
Azimuth.					LATIT	UDE.	·			
	32°	33°	34°	35°	36°	37°	3 ^{8°}	3 9°	40°	41°
00	6.80299	6.80306	6.80313	6.80320	6.80327	6.80335	6.80342	6.80350	6.80357	6.80365
5	300	307	314	322	329	336	344	351	3 59	366
10	305	312	319	326	333	340	348	355	363	370
15	313	320	326	333	340	348	355	362	369	376
20	324	330	3 37	343	350	357	364	37 1	378	38 5
25	337	343	349	355	362	368	375	382	388	395
30	352	35 ⁸	364	370	376	382	388	394	401	407
35	369	374	380	385	391	397	402	408.	414	420
40	386	392	397	402	407	412	418	423	429	434
45	405	410	414	419	424	429	434	439	444	449
50	423	428	432	436	44 I	445	450	454	459	464
55	441	445	449	453	4 57	461	465	469	474	478
60	458	462	465	469	472	476	480	484	487	491
65	473	476	492	483	486	489	493	496	500	503
70	486	489		495	498	501	504	507	510	514
75	497	500		505	508	510	513	516	519	522
80	505	507		512	51 5	517	520	523	525	528
85	510	512		517	519	522	524	527	529	532
90	511	514		518	521	523	526	528	531	533

[Formula for ρ_{α} given on p. xlv.]

TABLE 12.

LOGARITHMS OF RADIUS OF CURVATURE ρ_a (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a,

[Formula for ρ_{α} given on p. xlv.]

TABLE 13. LOCARITHMS OF FACTORS $\frac{\rho''}{2\rho_m\rho_m}$ FOR COMPUTING SPHEROIDAL EXCESS OF TRIANGLES.

UNIT=THE ENGLISH FOOT.

[Derivation and use of table explained on p. lviii.]

					····		1
φ	log. factor and change per minute.	¢	log. factor and change per minute.	φ	log. factor and change per minute.	φ	log. factor and change per minute.
, 0 °	0.37498	20 °	0.37429	40 °	0.37255 0.18	60 °	0.37056
1	498 	21	422 	41	244 0.17	61	047
2	497 	22	415	42	² 34 - 0.17	62	038
3	496 	23	408	43	224 0.17	63	030
4	495 	24	401 0.13	44	²¹⁴ 0.18	64	022 0.13
5	493	25	393	45	203 — 0.17	65	014 — 0.13
6	- 0.03 49 ¹	26	-0.13 3^{85} -0.13	46	193 - 0.17	66	006
7	0.03 489	27	377 - 0.15	47	183 	67	0.36998
8	0.03 487 0.05	28	368 - 0.13	48	173 	68	991
9	.484 0.07	29	360 — 0.15	49	162 	69	984 — 0.12
10	480	30	351	50	152 0.17	70	977
11	0.07 476 0.07	31	-0.15 342 -0.15	51	142 	71	971 - 0.12
12	472 	32	333 - 0.17	52	132 	72	964
13	468	33	$\frac{3^{23}}{-0.15}$	53	122 	73	959
14	463	34	<u>314</u> - 0.17	54	112 0.15	74	953 0.08
15	459	35	304	55	103	75	948 0.08
16	-0.10 453 -0.08	36	0.15 295 0.17	56	0.17 093 0.17	76	943
17	448 	37	285 - 0.17	57	083 	77	938
18	442 	38	275 - 0.17	58	074 	78	934
19	436 	39	265 	59	065 	79	930 - 0.07
20	429 0.12	40	255 	60	056 	80	926

SMITHSONIAN TABLES.

68

LOCARITHMS OF FACTORS $\frac{\rho''}{2 \rho_m \rho_n}$ for computing spheroidal Excess of Triangles.

UNIT = THE METRE.

[Derivation and use of table explained on p. lviii.]

	log. factor and		log. factor and		log. factor and		log. factor and
φ	change per minute.	\$	change per minute.	φ	change per minute.	φ	change per minute.
0 °	1.40695 — 0.00	20 °	1.40626 — 0.12	40 °	1.40452 	60 °	1.40253 — 0.15
I	695 0.02	21	619 	41	441 0.17	бі	244
2	694 — 0.02	22	612 	4 2	431 	62	²³⁵
3	693 	23	605 0.13	43	421 	63	227
4	692 — 0.03	24	597 0.12	44	411 — 0.18	64	219
5	690 0.03	25	590 	45	400 0.17	65	210 0.12
6	688 — 0.03	26	582 - 0.15	46	390 	66	203
7	686 	27	573 - 0.13	47	380 	67	195
8	683 0.05	28	$\frac{565}{-0.15}$	48	369 	68	188
9	680 — 0.05	29	556 0.13	49	359 	69	181 0.12
10	677 0.07	30	548 	50	349 0.17	70	174
11	673 — 0.07	31	539 	51	339	71	168
12	669 	32	530 	52	329 	72	161 0.10
13	665 — 0.08	33	520 0.1 5	53	319 0.17	73	155
14	660 0.08	34	511 	54	309 0.17	74	150
15	655 — 0.08	35	501 0.17	55	299 0.15	75	144 0.08
16	650 	36	491	56	290 	76	139
17	644 	37	482	57	280 	77	135
18	639 0.12	38	472	58	271 0.15	78	1 <u>30</u> 0.07
19	632 — 0.10	39	462 	59	262 0.15	79	126 0.05
20	626 — 0.12	40	452 0.18	60	<u>253</u> 0.15	80	123

SMITHSONIAN TABLES.

69

TABLE 15. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE ENGLISH FOOT.

[Derivation and use of table explained on p. lx.]

20 669 374 8.140 8.438 0.372 20 654 369 9.636 9.941 0.400 30 669 374 8.316 8.614 0.372 30 654 369 9.643 9.948 0.401 40 669 374 8.441 8.739 0.372 40 654 369 9.650 9.955 0.402	<u></u>							ained on p.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ø	aı	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	<i>c</i> 2	<i>φ</i>	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	<i>c</i> 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								7.99655			9.926	0.398
306603748,3168,6140,372306543509,6439,9450,403306693748,5388,3360,372306533669,6579,9930,403106693748,6138,0120,3721106533689,6639,9000,404206683748,7439,0400,3721206523689,6779,9000,404206683748,7439,0400,373306513689,6690,0330,403306683748,8809,1790,37350503689,6060,0030,449206683748,9139,2160,3731206483079,7140,0230,413206683739,0439,3440,374306483079,7200,0230,413306683739,0439,3420,374306483079,7380,4410,4453006683739,0499,3033,741306463669,7380,4410,4453006683739,0499,3033,741306463669,7740,6000,4143006773739,1189,4170,375106473669,7740,6000,4143006773739,118				7.839	8.137		1		369			0.399
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-				-						-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40		374	8.441	8.739	0.372	40	654	369	9.650	9.955	0.402
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									369			0.403
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								653	308			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		668		8.742				652	368		9.983	
506683748.8869.179 0.373 506503689.668 0.003 0.490 106683738.9539.216 0.373 1212 0.649 3679.708 0.016 0.490 206683738.9559.283 0.373 206493679.728 0.029 0.413 206683739.0439.344 0.374 206483679.726 0.029 0.413 406683739.0439.342 0.374 406483679.732 0.029 0.413 506683739.0499.393 0.374 130.6463669.738 0.048 0.416 106673739.1189.417 0.375 106.463669.738 0.048 0.417 206673739.1499.475206.453669.775 0.056 0.418 306673739.2209.579 0.377 106.443659.776 0.077 0.422 506673739.2249.557 0.377 206.443659.776 0.024 0.423 306663739.2249.570 0.377 206.423059.776 0.024 0.423 306663739.2349.570 0.377 206.423059.792 0.125 0.423 <t< td=""><td></td><td></td><td></td><td>8.793</td><td></td><td></td><td></td><td></td><td>368</td><td></td><td></td><td></td></t<>				8.793					368			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				8.880					308 368			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		668					-				-	
306683739.019.310.374306483679.7200.0200.413406683739.0439.3420.374406483679.7260.0350.414506683739.0499.3930.37413006473679.7260.0350.414306673739.1189.4170.375106463669.7380.0480.417206673739.1499.4390.375206453669.7740.0500.418306573739.1619.4600.375306443659.7660.0710.420506673739.2209.5190.376140.6423659.7710.0880.443206663739.2249.5700.377206423659.7710.0880.442206663739.2279.5700.377206423659.7820.0940.425306663739.2879.5860.378406403649.7920.1000.426506653739.3299.5620.378506403649.7920.1000.426506653739.3319.6170.379150.6393649.8030.1160.439506653729.3459.659<			373		9.251	0.373		649	367	9.708	0.016	0.410
40 668 373 9.043 9.342 0.374 40 648 327 9.726 0.033 0.414 50 668 373 9.096 9.393 0.374 13 50 647 367 9.732 0.041 0.415 10 667 373 9.118 9.417 0.375 10 646 366 9.738 0.048 0.416 30 667 373 9.116 9.440 0.375 20 645 366 9.749 0.056 0.4178 30 667 373 9.161 9.460 0.375 30 645 366 9.755 0.065 0.419 40 667 373 9.220 9.500 0.376 14 0.642 365 9.771 0.083 0.422 4∞ 667 373 9.227 9.530 0.377 14 0.642 365 9.771 0.083 0.423 10 666 373 9.227 9.586 0.378 40 644 364 9.798 0.100 0.425 50 666 373 9.227 9.586 0.378 40 640 364 9.803 0.111 0.429 50 666 373 9.237 9.586 0.379 15 0.633 364 9.803 0.111 0.429 50 666 373 9.337 9.637 30 641 365 9.781 0.100 </td <td></td> <td>-</td> <td></td>											-	
506683739.0699.368 0.374 13506473679.732 0.041 0.415 3006663739.1189.417 0.375 106463669.744 0.054 0.417 206673739.1189.417 0.375 206453669.744 0.056 0.418 306673739.1629.481 0.376 406443669.751 0.071 0.420 406673739.2219.500 0.376 506443659.776 0.071 0.420 506673739.2279.519 0.376 14 0.642 3659.771 0.083 0.443 206663739.2219.570 0.377 106423659.787 0.084 0.4425 306663739.2279.554 0.377 10 6423659.787 0.004 0.425 306663739.2279.570 0.377 306413559.787 0.100 0.428 506663739.2279.536 0.378 406403649.988 0.110 0.429 506653739.3179.617 0.379 15 0.633 3649.883 0.116 0.430 106653729.3319.631 0.379 15 0.633 3649.883 0.112 <td< td=""><td></td><td>668</td><td></td><td></td><td>9.342</td><td></td><td></td><td></td><td>307 367</td><td></td><td></td><td></td></td<>		668			9.342				307 367			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50	668			9.368			647	367			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-								
	1 1	667		9.161	9.460			645	366	9.755		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								644	366	9.761	0.07 1	0.420
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			· ·								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		666		-				643	365			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i I		373	- 1			2 1	642	365	9.782	0.094	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1				641				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		666										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 00	665	373	9.317		0.379		639	364			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	665 665						639				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1						1 1	627				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	664	372	0.372	9.672			637	363			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• •			· · · ·	0.381		636	363		0.142	0.437
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 - 1					0.381		635	363	9.832	0.147	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		663				0.383			362	9.841	0.158	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		663						633	362		0.163	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		662						632	362	9.851		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		662									I 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			37 1	9.474		0.386	10	630	361	9.864	0.182	0.448
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1		- 1			0.300						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		661		9.504	9.806	0.387		628	360	9.073		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			37 1	9.513		0.388	50	627	360	9.882	0.202	0.453
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					9.825						0.206	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					9.843							0.450
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		659	37 I	9.549	9.852	0.391	30	624		· •		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		659 658		9.558			40	624	359	9.903	0.225	0.461
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-								-	
20 0.57 3/0 9.591 9.095 0.395 20 620 358 9.919 0.243 0.467 30 657 370 9.598 9.903 0.396 30 620 357 9.923 0.243 0.467 40 656 370 9.606 9.910 0.396 40 619 357 9.923 0.248 0.469 50 656 369 9.614 9.918 0.397 50 618 357 9.921 0.252 0.470 50 656 369 9.614 9.918 0.397 50 618 357 9.931 0.256 0.472	10	657	370	9.583	9.886	0.394	10	621	358			
50 656 369 9.614 9.918 0.397 50 618 357 9.931 0.256 0.472	, ,	657						1	35 ⁸	9.913	0.243	0.467
50 656 369 9.614 9.918 0.397 50 618 357 9.931 0.256 0.472		656										
		656									2.1	
	10 00	655	369	9.621	9.926		-					

TABLE 15. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE ENGLISH FOOT.

[Derivation and use of table explained on p. lx.]

ø	aı	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	<i>c</i> 2	φ	<i>a</i> 1	$b_2 = c_2$	<i>a</i> ₂	b2	<i>c</i> 2
20°00'	7-99 617	7.99357	9.935	0.261	0.474	30°00′	7.99558	7.99337	0.135	0. 496	
10 20	616 6 15	356 356	9·939 9·943	0.265 0.270	0.475 0.477	10 20	557 556	337 336	0.138 0.141	0.500	0.595 0.598
30	615	356	9.947	0.274	0.479	30	555	336	0.144	0.507	0.600
40 50	614 613	355 355	9.951 9.955	0.278 0.282	0.480 0.482	40 50	554 553	335 335	0.146 0.149	0.511 0.514	0.603 0.605
21 00	б12	355	9.958	0.287	0.484	31 00	552	335	0.152	0.518	0.607
10 20	611 610	355 354	9.962 9.966	0.291 0.295	0.486 0.487	10 20	550 549	334 334	0.155 0.158	0.522 0.525	0.610 0.612
30	6 09	354	9.970	0.299	0.489	30	548	333	0.161	0.529	0.615
40 50	. 608 608	354 353	9.973 9.977	0.304 0.308	0.491 0.493	40 50	547 546	333 333	0.164 0.166	0.532 0.536	0.617 0.619
22 00	607	353	9.981	0.312	0.494	32 00	545	332	0.169	0.540	0.622
10	606 605	353 353	9.984 9.988	0.316	0.496 0.498	10	544 542	332 332	0.172 0.175	0.543 0.547	0.624 0.627
30	604	352	9.991	0.324	0.500	30	541	331	0.177	0.550	0.629
40 50	603 602	352 352	9.995 9.998	0.328	0.502	40 50	540 539	33 ¹ 330	0.180 0.183	0.554 0.558	0.632 0.634
23 00	601	351	0.002	0.336	0.505	33 00	538	330	0.186	0.561	0.637
10 20	600 600	351 351	0.005	0.340	0.507	10 20	537 535	330 329	0.188 0.191	0.565 0.568	0.639 0.642
30	599 598	350	0.012	o. 348	0.511	30	534	329	0.194	0.572	0.644
40 50	598 597	350 350	0.016 0.019	0.352	0.513	40 50	533 532	328 328	0.197 0.199	0.575 0.579	0.647 0.650
24 00	596	349	0.023	0.360	0.517	34 00	531	328	0.202	0.583	0.652
10 20	595 594	349 349	0.026 0.029	0.364 0.368	0.518 0.520	10 20	529 528	327 327	0.205	0.586 0.590	0.655 0.657
30	593	348	0.033	0.372	0.522	30	527 526	326	0.210 0.213	0.593 0.597	0.660
40 50	592 591	348 348	0.036 0.039	0.376 0.380	0.524 0.526	40 50	525	326 326	0.215	0.597	0.665
25 00 10	590 589	347	0.043 0.046	0.384 0.388	0.528	35 00 10	523 522	325	0.218 0.221	0.604 0.608	0.668
20	588	347 347	0.040		0.530 0.532	20	521	325 324	0.224	0.611	0.673
30 40	587 586	346 346	0.052 0.056	0.396 0.399	0.534 0.536	30 40	520 519	324 324	0.226	0.615 0.618	0.676
50	585	346	0.059	0.403	0.538	50	517	324 323	0.232	0.622	0.681
26 00 10	584 583	345 345	0.062	0.407 0.411	0.540 0.543	36 00 10	516 515	323 322	0.234	0.625 0.629	0.684
20	582	345	0.068	0.415	0.545	20	514	322	0.239	0.632	0.689
30 40	581 580	344 344	0.072	0.418	0.547 0.549	30 40	512	322 321	0.242	0.636 0.640	0.692
50	579	344	0.078	0.426	0.551	50	510	321	0.247	0.643	0.698
27 00 10	578 577	343 343	0.081	0.430	0.553 0.555	37 00	509 507	320 320	0.250	0.647 0.650	0.700
20	576	343	0.087	0.437	0.557	20	506	320	0.255	0.654	0.706
30 40	575 574	342 342	0.090	0.441 0.445	0.559	30 40	505 504	319 319	0.258	0.657 0.661	0.709
50	573	342	0.096	0.448	0.564	50	503	318	0.263	0.665	0.715
28 00 10	57 I 570	341 341	0.099	0.452 0.456	0.566 0.568	38 00 IO	501 500	318 317	0.266	0.668 0.672	0.717
20	569	341	0.105	0.460	0.570	20	499	317	0.271	0.675	0.723
30 40	568 567	340 340	0.108	0.463 0.467		30	498 496	317	0.273	0.679	0.726
50	566	340	0.114	0.471	0.577	50	495	316	0.278	0.686	0.732
29 0 0 10	565 564	339 339	0.117	0.474 0.478	0.579 0.582	39 00	494 492	315 315	0.281	0.690 0.693	
20	563	338	0.123	0.482	0.584	20	491	315	0.286	0.697	0.741
30 40	562 561	338 338	0.126			30 40	490 489	314 314	0.289	0.701 0.704	0.744 0.747
50	560	337	0.132	0.493	0.591	50	487	313	0.294	0.708	0.750
30 00	558	337	0.135	0.496	0.593	40 00	486	313	0.296	0.711	0.753
L	I	<u> </u>	<u> </u>	1	<u> </u>		1	1	1	1.	L

TABLE 15. LOGARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT.

[Derivation and use of table explained on p. lx.]

			1	<u></u>	1	<u>الم</u>			I	1	1
φ	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	<i>c</i> 2	¢	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 2	<i>b</i> 2	C2
40°00'	7.99486	7.99313	0.296	0.711	0.7 52	50°00′	7.99409	7.99287	0.448	0.939	0.955
10 20	485 484	312 312	0.299 0.301	0.715	0.755	10 20	408 407	287 287	0.450	0.944	0.958 0.962
30	482	312	0.304	0.722	0.762	30	406	286	0.455	0.952	0.966
40	481	311	0.307	0.726	0.765	40	404	286	0.458	0.956	0.970
50	480	311	0.309	0.730	0.768	50	403	285	0.460	0.960	0.974
41 00 10	479 477	310 310	0.312 0.314	0.733 0.737	0.771 0.774	51 00	402 401	285 284	0.463	0.964 0.968	0.978 0.982
20	476	309	0.317	0.740	0.777	20	399	284	0.468	0.972	0.985
30	475	309	0.319	0.744	0.780	30	398	284	0.471	0.976	o .989
40 50	473 472	309 308	0.322 0.324	0.748 0.751	0.783 0.786	40 50	. 397 396	283 283	0.473 0.476	0,981 0.985	0.993 0.997
42 00	471	308	0.327	0.755	0.789	52 00	394	2 82	0.478	0.989	1.001
10	470	307	0.329	0.759	0.792	10	393	282	0.481	0.003	1.005
20	468 467	307 306	0.332	0.762 0.766	0.796	20	392	281	0.484	0.998	1.009
30 40	407 466	300	0.334 0.337	0.700	0.799	30 40	391 389	281 281	0.486 0.489	1.002 1.006	1.013 1.017
50	464	306	0.339	0.774	0.805	50	388	280	0.491	1.010	1.021
43 00	463	305	0.342	0.777	0.808	53 00	387	280	0.494	1.015	1.025
10 20	462 461	305 304	0.344 0.347	0.781 0.785	0.812 0.815	10 20	386 384	279 279	0.497	1.019 1.023	1.030
30		304	0.349	0.788	0.818	30	383	279	0.499 0.502	1.023	1.034 1.038
40	459 458	303	0.352	0.792	0.821	40	382	278	0.505	1.032	1.042
50	457	303	0.354	0.796 0.800	0.824	50	381	278	0.507	1.036	1.046
44 00	455 454	303 302	0.357 0.359	0.800	0.828 0.831	54 00 10	379 378	277 277	0.510 0.512	1.041 1.045	1.050 1.055
20	453	302	0.362	0.807	0.834	20	377	277	0.515	1.049	1.059
30	452	301	0.364	0.811	0.838	30	376	276	0.518	1.054	1.063
40 50	450 449	301 300	0.367 0.370	0.815 0.818	0.841 0.844	40 50	375 373	276 275	0.520 0.523	1.058 1.063	1.067 1.072
45 00	448	300	0.372	0.822	0.848	55 00	372	-75 275	0.526	1.067	1.076
10	446	300	0.375	0.826 0.830	0.851	10	371	275	0.528	1.072	1.080
20 30	445 444	299 299	0.377 0.380	0.830	0.854 0.858	20 30	370 369	274	0.531	1.076	1.084
40	443	298	0.382	0.837	0.861	40	367	274 273	0.534 0.537	1.081 1.085	1.089 1.093
50	441	298	0.385	0.841	0.865	50	366	273	0.539	1.090	1.098
46 00	440 439	297 297	0.387 0.390	0.845 0.849	0.868 0.872	56 00 10	365 364	273	0.542	1.094	1.102
20	437	297	0.392	0.853	0.875	20	363	272 272	0.545 0.547	1.099 1.104	1.106
30	436	296	0.395	0.856	0.878	30	361	271	0.550	1.108	1.115
40 50	435 434	296 295	0.397	0.860 0.864	0.882 0.885	40 50	360	271	0.553	1.113	1.120
47 00	432	295	0.402	0.868	0.889	57.00	359 358	271 270	0.556 0.558	1.118	1.124 1.129
10	431	294	0.405	0.872	0.892	10	357	270	0.561	1.127	1.129
20 30	430 428	294 294	0.407 0.410	0.876 0.880	0.896 0.900	20	356	269	0.564	1.132	1.138
40	427	293	0.412	0.884	0.900	30 40	354 353	269 269	0.567	1.137 1.141	1.143 1.147
50	426	293	0.415	o.888	0.907	50	352	268	0.509	1.146	1.14/
48 00 10	425 423	292 292	0.417 0.420	0.891 0.895	0.910	58 00	351	268	0.575	1.151	1.157
20	422	292	0.420	0.899	0.914	10 20	350 349	267 267	0.578 0.581	1.156	1.162 1.166
30	421	291	0.425	0.903	0.921	30	347	267	0.583	1.166	1.100
40 50	420 418	291 290	0.427 0.430	0.907		40	346	266	0.586	1.170	1.176
49 00	417	290	0.430	0.911 0.915	0.022	50 59 00	345	266 266	0.589 0.592	1.175	
10	416	289	0.435 0.438	0.919	0.936	10	344 343	200	0.592 0.595		1.185
20 30	414 413	289 289		0.923	0.940	20	342	265	0.598	1.190	
40	413	289 288	0.440 0.443	0.927 0.931	0.943 0.947	30 40	341	264	0.600	1.195	
50	411	288	0.445	0.935	0.951	50	339 338	264 264	0.603	1.200 1.205	1.205
50 00	409	287	0.448	0.939	0.955	60 00	337	263	0.609	1.210	
							1				
	NIAN TAE										

SMITHSONIAN TABLES.

1.5

Table 15. LOCAPITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained or a lat

.

φ	aı	$b_{I} = c_{I}$	<i>a</i> ₂	<i>b</i> 2	62	ø	aı	$b_1 = c_1$	a_2	<i>b</i> 2	<i>c</i> ₂
60°00′	7.99337	7.99263	0.609	1.210	1.215	70°00′	7.99278	7.99244	0.809	1.575	1.576
10 20	336	263 263	0.612	1.216 1.221	1.220 1.225	10 20	277 277	243 243	0.813 0.817	1.583 1.590	1.584 1.591
30	335 334	263	0.618	1.226	1.230	30	276	243	0.821	1.598	1.599
40	333	262	0.621	1.231	1.235	40	275	242	0.825	1.605	1.606
50	332	261 261	0.624 0.627	1.236	1.240	50	274	242 242	0.829 0.833	1.613	1.614 1.621
61 00 10	331 329	201	0.627	1.241 1.247	1.245 1.251	71 00 10	273 273	242	0.837	1.629	1.629
20	328	260	0.633	1.252	1.256	20	272	241	0.841	1.636	1.637
30 40	327 326	260 260	0.636 0.639	1.257 1.263	1.261 1.266	30	27 I 270	241 241	0.845 0.849	1.644 1.652	1.645 1.653
50	325	259	0.642	1.268	1.272	50	269	241	0.854	1.660	1.661
62 00	324	259	0.645	1.273	1.277	72 00	269	240	0.858 0.862	1.669 1.677	1.669 1.677
10 20	323 322	259 258	0.648 0.651	1.279 1.284	1.282 1.288	10 20	268 267	240 240	0.866	1.685	1.686
30	321	258	0.654	1.290	1.293	30	266	240	0.871	1.694	1.694
40	320	257	0.657 0.660	1.295	1.298	40	266 265	239 239	0.875 0.880	1.702 1.710	1.702 1.711
50 63 00	319 318	² 57 257	0.663	1.301 1.306	1.304 1.309	50 73 00	205	239	0.884	1.719	1.720
10	317	256	0.666	1.312	1.315	10	264	239	0.889	1.728	1.728
20	316	256	0.669	U .	1.320	20	263 262	238	0.893 0.898	1.737 1.745	1.737 1.746
30 40	315 314	256 255	0.672	1.323	1.326 1.332	30 40	202 261	238 238	0.0903	1.754	1.755
50	313	255	0.679		1.337	50	261	238	0.907	1.763	1.764
64 00	312	255	0.682	1.341	1.343	74 00 10	260 259	238 237	0.912	1.772 1.782	1.773 1.782
10 20	311 310	254 254	0.688	1.346	1.349 1.355	20	259	237	0.922	1.791	1.791
30	309	254	0.692	1.358	1.360	30	258	237	0.927	1.800	108.1
40 50	308 307	253 253	0.695	1.363	1.366 1.372	40 50	257 257	237 236	0.931	1.810 1.820	1.810 1.820
65 00	306	253	0.701			75 00	256	236	0.941	1.829	1.830
10	305	252	0.705			10	255	236	0.946 0.952	1.839 1.849	1.839 1.849
20 30	304	252 252	0.708	1 .	1	20 30	255 254	236 236	0.957	1.859	1.859
40		251	0.715	1.400	1.402	40	254	235	0.962	1.869	1.869
50	-	251	0.718			50	253	235	0.967	1.879 1.890	1.880 1.890
66 00	· ·	251	0.721			76 00 10	252 252	235 235	0.978	1.900	1.901
20	298	250	0.728	1.425	1.427	20	251	235	0.984	1.911	1.911
30		250 249	0.732		1.433	30 40	250 250	234 234	0.989	1.922 1.933	1.922 1.933
50		249	0.739			50	249	234	1.000	1.944	1.944
67 00		249	0.742			77 00	249 248	234	1.006 1.012	1.955 1.966	1.955 1.966
10		249 248	0.746			20		²³⁴ 233	1.012	1.978	1.978
30	-	248	0.753	1.470	1.472	30		233	1.024	1.989	1.989
40		248	0.756			40		233 233	1.030	2.001 2.013	2.001 2.013
50 68 oc		247 247	0.763		1	78 00		233	1.042	2.025	2.025
10	288	247	0.767	1.497	1.499	10	245	233	1.048	2.037	2.037
20	1	246	0.771			20		232 232	1.054	2.050	2.050 2.062
30		246 246	0.774		1.512	40		232	1.067	2.075	2.075
50	284	246	0.782	1.525	1.526	50	243	232	1.074 1.081	2.088	
69 00			0.786			79 00		232 232	1.081	2.101	
20		245 245	0.793		1.547	20		231	1.094	2.128	2.128
30	281	2 44	0.797	1.553		30		231	1.101	2.142	
40		244 244	0.801			40		231	1.116		
70 00		244	0.800			80 00			1.123	2.184	2.184
									<u> </u>		<u> </u>

TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE. [Derivation and use of table explained on p. lx.]

ø	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 2	b2	£2	ø	<i>a</i> 1	$b_{\rm I} = c_{\rm I}$	a2	<i>b</i> 2	c2
0°00′	8.51268	8.50973	- 8	- 8	1.404	10000	8.51254	8.50968	0.653	0.958	1.430
10 20	268 268	973 973	8.871 9.172	9.169 9.470	1.404 1.404	10	254 253	968 968	0.660 0.668	0.965 0.973	1.431 1.432
30	268	973	9.348	9.646	1.404	30	253	968	0.675	0.980	1.433
40	268	973	9.473	9.771	1.404	40	253	968	0.682	0.987	1.434
50 I 00	268 267	973	9.570	9.868	1.404	50	252	967 967	0.689 0.695	0.995 1.002	1.435
10	267	973 973	9.649 9.716	9.947 0.014	1.404 1.404	11 00	252 251	967	0.702	1.002	1.436 1.436
20	267	973	9.774	0.072	1.404	20	251	967	0.709	1.015	1.437
30	267 267	973	9.825	0.123	1.405	30	250	967	0.715	1.022 1.029	1.438
40 50	207	973 973	9.871 9.912	0.169 0.211	1.405 1.405	40 50	250 249	967 966	0.722 0.728	1.029	1.439 1.440
2 00	267	972	9.950	0.248	1.405	12 00	249	966	0.734	1.042	1.441
10	267	972	9.985	0.283	1.405	10	248	966	0.740	1.048	1.442
20 30	267 266	972 972	0.017 0.047	0.315 0.346	1.405 1.406	20 30	248 247	966 966	0.746 0.752	1.055 1.061	1.444 1.445
40	266	972	0.047	0.374	1.406	40	246	966	0.758	1.067	1.446
50	266	972	0.101	0.400	1.406	50	2 46	965	0.764	1.073	1.447
3 00 10	266 266	972 972	0.126 0.150	0.425 0.449	1.406 1.407	13 00	245 245	965 965	0.770 0.776	1.080 1.086	1.448 1.449
20	266	972 972	0.172	0.449	1.407	20	245 244	905	0.781	1.000	1.449 1.450
30	266	972	0.193	0.492	1.407	30	244	965	0.787	1.097	1.451
40 50	266 266	972 972	0.214	0.513	1.408 1.408	40	243 242	964 964	0.792 0.798	1.103	I.452
4 00	265	972 972	0.233 0.252	0.532 0.551	1.408	50 14 00	242 242	904 964	0.790	1.115	1.454 1.455
10	265	972	0.269	0.569	1.409	10	241	964	0.809	1.120	1.456
20	265	972	0.286	0.586	1.409	20	241	964	0.814	1.126	1.457
30 40	265 265	972 972	0.303 0.319	0.602 0.618	1.409 1.410	30 40	240 239	963 963	0.819 0.824	1.132 1.137	1.458 1.460
50	264	972	0.334	0.634	1.410	50	239	963	0.830	1.143	1.461
5 00	264	972	0.349	0.649	1.411	1500	238	963	0.835	1.148	1.462
10 20	264 264	971 971	0.363 0.377	0.663 0.677	1.411 1.411	10 20	237 237	963 962	0.840 0.845	1.153 1.159	1.463 1.465
30	264	971	0.390	0.691	1.412	30	236	962	0.850	1.164	1.466
40	263	971	0.404	0.704	1.412	40	235	962	0.854	1.169	1.467
50 600	263 263	971 971	0.416 0.428	0.717 0.729	1.413 1.413	50 16 00	235	962 961	0.859 0.864	1.174	1.469
10	263	971	0.440	0.741	1.414	10 00	234 233	961 961	0.869	1.179 1.185	1.470 1.471
20	262	971	0.452	0.753	1.415	20	² 33	961	0.873	1.190	1.473
30: 40	262 262	971 971	0.464 0.475	0.764 0.776	1.415 1.416	30	232 231	961	0.878 0.883	1.195	1.474
50	261	971	0.485	0.787	1.416	40 50	231	961 960	0.887	1.200 1.205	1.475 1.477
7 00	261	970	0.496	0.797	1.417	17 00	230	960	0.892	1.210	1.478
10 20	261 260	970 970	0.506 0.516	0.808 0.818	1.417 1.418	10 20	229 228	960 960	0.896	1.214	1.480 1.481
30	260	970 970	0.526	0.828	1.419	30	228	900 959	0.901 0.905	1.219 1.224	1.482
40	260	970	0.536	0.838	1.419	40	227	959	0.910	1.229	1.484
50 800	259 250	970	0.545	0.848	1.420	50	226	959	0.914	1.234	1.485
10	259 259	970 970	0.555 0.564	0.857 0.866	1.421 1.421	18 00 10	225 225	959 958	0.918 0.922	1.238 1.243	1.487 1.489
20	258	970	0.573	0.875	1.422	20	224	958 958	0.927	1.248	1.490
30	258 258	969	0.581	0.884	1.423	30	223	958	0.931	1.252	1.491
40 50	258 257	969 969	0.590 0.598	0.893 0.902	1.424 1.424	40 50	22 3 22 2	958 957	0.935	1.257 1.261	
9 00	257	969	0.607	0.910	1.425	19 00	221	937 957	0.939		1.495
10	256	969	0.615	0.918	1.426	10	220	957	0.947	1.271	1.498
20 30	256 256	969 969	0.623 0.630	0.927 0.935	1.427 1.428	20	219	957	0.951		1.499
40	255	<u>669</u>	0.638	0.935	1.428	30 40	218 218	956 956	0.955 0.959	1.279 1.284	1.501 1.50 2
50	255	968	0.646	0.950	1.429	50	217	956	0.963	1.288	1.504
10 00	254	968	0.653	0.958	1.430	20 00	216	955	0.967	1.293	1.506
·		1 F C									

TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATI-TUDE, LONCITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE METRE. [Derivation and use of table explained on p. lx.]

					}	Ī					
\$	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	<i>c</i> 2	φ	<i>a</i> 1	$b_1 = c_1$	a2	<i>b</i> ₂	<i>c</i> ₂
20°00′	8.51216	8.50955	0.967	1.293	1.506	30°00′		8.50936	1.167	1.528	1.625
10	215	955	0.971	1.297	1.507	10	156	936 037	1.170 1.173	1.532	1.627
20	214 214	955 955	0.975 0.979	1.301	1.509 1.511	20 30	155 154	935 935	1.176	1.535 1.539	1.630 1.632
30 40	214	955 954	0.983	1.310	1.512	40	153	933 934	1.178	1.543	1.635
50	212	954	0.987	1.314	1.514	50	1 52	934	1.181	1.546	1.637
21 00	211	954	0.990	1.319	1.516	31 00	151	934	1.184	1.550	1.639
10	210	953	0.994	1.323	1.518	10	I 49	933	1.187	1.554	1.642
20	209 208	953	0.998	I.327	1.519	20	148 147	933 933	1.190 1.193	1.557 1.561	1.644 1.646
30 40	200	953 953	1.002 1.005	1.331 1.336	1.521 1.523	30 40	146	933 932	1.195	1.564	1.649
50	207	952	1.009	1.340	1.524	50	145	932	1.198	1.568	1.651
22 00	206	952	1.013	1.344	1.526	32 00	144	931	1.201	1.572	1.654
10	205	952	1.016	1.348	1.528	10	143 141	93I	1.204 1.207	1.575	1.656 1.659
20	204	951 951	1.020 1.023	1.352 1.356	1.530 1.532	20	141	931 930	1.209	1.579 1.582	1.661
30 40	203 202	951	1.023	1.350	1.532	30		930	1.212	1.586	1.664
50	201	951	1.030	1.364	1.535	50	139 138	929	1.215	1.590	1.666
23 00	200	950	1.034	1.368	1.537	33 00	137	929	1.218	1.593	1.669
10	199	950	1.037	1.372	I.539	10	136	929 928	I.220	1.597 1.600	1.671 1.674
20	198 197	950 949	1.041 1.044	1.376 1.380	1.541 1.543	20 30	134 133	928 928	1.223 1.226	1.600	1.676
30 40	197	949	1.044	1.384	1.545	40	132	927	1.229	1.607	1.679
50	196	949	1.051	1.388	1.547	50	131	927	1.231	1.611	1.682
24 00	195	948	1.055		1.549	34 00	1 30	927	1.234	1.615	1.684
10	194	948	1.058 1.061	1.396		10	1 28	926 926	1.237 1.239	1.618 1.622	1.687 1.689
20	193 192	948	1.001	1.400 1.404	1.552 1.554	20 30	1 27 1 26	925	1.239	1.625	1 692
30 40	192	947 947	1.068	1.408	1.556	40	125	925	1.245	1.629	1.695
50	190	947	1.071	1.412	1.558	50	124	925	1.248	1.632	1.697
25 00	189	946	1.075	1.416		35 00	122	924	1.250	1.636	1.700
10 20	188 187	946 946	1.078	I.420 I.424	1.562 1.564	10	I 2I I 20	924 923	1.253 1.256	1.639 1.643	1.702 1.705
30	186	940	1.084	1.427	1.566	30	119	923	1.258	1.647	1.708
40	185	945	1.088	1.431	1.568	40	118	923	1.261	1.650	1.711
50	184	945	1.091	1.435	1.570	50	116	922	1.264	1.654	1.713
26 00	183	944	1.094	1.439	1.572	36 00	115	922	1.266 1.269	1.657 1.661	1.716
10 20	182 181	944	1.097	1.443 1.447	1.575 1.577	10	114 113	921 921	I.209 I.27I	1.664	1.719 1.721
30	180	944	1.104	1.450		30	111	921	1.274	1.668	1.724
40	179	943	1.107	1.454	1.581	40	110	920	1.277	1.672	1.727
50	178	943	1.110	1.458	1.583	50	109	920	1.279	1.675	1.730
27 00	177	942	1.113	1.462	1.585	37 00	108 106	919 919	1.282 1.285	1.679 1.682	1.732
10 20	176 175	942 942	1.116	1.465 1.469		20	100	919	1.287	1.686	1.735 1.738
30	174	941	1.122	1.473		30	104	918	1.290	1.689	1.741
40	172	941	1.125	1.477	1.594	40	103	918	1.292	1.693	1.744
50	171	941	1.128	1.480		50	102	917	1.295 1.298	1.697	1.747 1.749
28 00	170	940	1.131 1.134	1.484 1.488		38 00	100 099	917 916	1.298	1.700 1.704	1.752
10 20	169 168	940 940	1.134	1.400		20	098	916	1.303	1.707	1.755
30	167	939	1.140			30	097	9 16	1.305	1.711	1.7 <u>5</u> 8
40	166	030	1.143	1.499	1.607	40	095	915	1.308	1.715	1.761
50	165	938	1.146		1.609	50	094	915	1.313		1.764 1.767
29 00	164 163	938 938	1.149 1.152		1.611	39 00 10	093 092	914 914	1.313	1.725	
10 20	163	930	1.152	1.514	1.616	20	090	914	1.318	1.729	
30	161	937	1.158	1.517	1.618	30	089	913	1.321	1.733	
40	160	937	1.161	1.521	1.620	40	088	913	1.323	1.736	1.779
50	1 58	936	1.164		1.623	50	086 085	912	1.326 1.328	1.740 1.743	
30 00	I 57	936	1.167	1.528	1.625	40 00	005	912	1.320	1.743	1.704
	1	1	I	1	1	<u> </u>	<u> </u>	<u> </u>		1	·

TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT == THE METRE. [Derivation and use of table explained on p. lx.]

¢	<i>a</i> 1	$b_1 = c_1$	a_2	b2	<i>c</i> 2	ø	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	62
40°00′	8.51085	8.50912	1.328	1.743	1.784	50°00′	8.51008	8.50886	1.480	1.971	1.987
10 20	084 083	911 911	1.331 1.333	1.747 1.751	1.787 1.790	10	007	886 885	1.482 1.485	1.975	1.99 0 1.994
30	081	911	1.336	1.754	1.793	30	005	885	1.487	1.984	1.994
40	080	910	1.338	1.758	1.797	40	003	885	1.490	1.988	2.002
50 41 00	0 79	910	1.341	1.762	1.800	50	002	884	1.492	1.992	2.006
41 00	078 076	909 909	1.344 1.346	1.765 1.769	1.803 1.806	51 00	001	884 883	1.495	1.996 2.000	2.010
20	075	908	1.349	1.772	1.809	20	8.50998	883	1.500	2.004	2.017
30 40	074	908 908	1.351	1.776	1.812	30	997	882 882	1.503	2.008	2.021
50	072 071	900	1.354 1.356	1.780	1.815 1.818	40 50	996 994	882	1.505 1.508	2.013 2.017	2.025
42 00	070	907	1.359	1.787	1.821	52 00	993	881	1.510	2.021	2.033
10 20	.069	906	1.361	1.791	1.824	10	992	881	1.513	2.025	2.037
30	067 066	906 905	1.364 1.366	1.794 1.798	1.828 1.831	20 30	991 990	880 880	1.516 1.518	2.030 2.034	2.041
40	065	905	1.369	1.802	1.834	40	988	880	1.521	2.034	2.045
50	063	905	1.371	1.805	1.837	50	987	879	1.523	2.042	2.053
43 00 10	062 061	904 904	1.374 1.376	1.809 1.813	1.840 1.843	53 00	986 08 r	879 878	1.526	2.047	2.057
20	060	903	1.379	1.817	1.847	10	985 983	878	1.529 1.531	2.051 2.055	2.062
30	058	903	1.381	1.820	1.850	30	982	877	1.534	2.060	2.070
40 50	057 056	902	1.384 1.386	1.824 1.828	1.853 1.856	40	981	877	1.537	2.064	2.074
44 00	054	902 902	1.389	1.820	1.860	50 54 00	980 978	877 876	1.539 1.542	2.068	2.078 2.082
10	053	901	1.391	1.835	1.863	10	977	876	1.542	2.073 2.077	2.082
20	052	901	1.394	1.839	1.866	20	976	875	1.547	2.081	2.091
30 40	051 049	900 900	1.396 1.399	1.843 1.847	1.870 1.873	30	975	875 875	1.550	2.086	2.095
50	048	899	1.401	1.850	1.876	40 50	973 972	874	1.552 1.555	2.090 2.095	2.099 2.104
45 00	0 47	899	1.404	1.854	1.880	55 00	971	874	1.558	2.099	2.108
10 20	045 044	899 898	1.407 1.409	1.858 1.862	1.883 1.886	10	970	873	1.560	2.104	2.112
.30	043	898	1.409	1.865	1.800	20 30	969 967	873 873	1.563 1.566	2.108	2.116
40	042	897	1.414	1.869	1.893	40	966	872	1.568	2.117	2.125
50 46 00	040	897 805	1.417	1.873	1.897	50	965	872	1.571	2.122	2.130
40 00 IO	039 038	896 896	1.419 1.422	1.877 1.881	1.900 1.903	56 00 10	964 963	871 871	1.574	2.126 2.131	2.134 2.138
.20	036	896	1.424	1.885	1.907	20	961	871	I.577 I.579	2.136	2.130
30	035	895	1.427	1.888	1.910	30	960	870	1.582	2.140	2.147
40 50	034 033	895 894	1.429 1.432	1.892 1.896	1.914 1.917	40 50	959 958	870 869	1.585 1.588	2.145	2.152
47 00	031	894	1.434	1.900	1.921	57 00	930	869	1.590	2.150 2.154	2.156 2.161
·10 20	030	893	1.437	1.904	1.924	10	956	869	1.593	2.1 59	2.166
20 30	029 027	893 893	1.439 1.442	1.908 1.912	1.928	20	954	868	1.596	2.164	2.170
40	026	892	I.442	1.912	1.932 1.935	30 40	953 952	868 867	1.599 1.601	2.169	2.175 2.179
50	025	892	1.447	1.920	1.939	50	951	867	1 .604	2.178	2.184
.48 00 IO	024	891 891	I.449	1.923	1.942	58 00	950	867	1.607	2.183	2.189
20	021	890	1.452 1.454	1.927 1.931	1.946 1.950	10 20	949 947	866 866	1.610 1.613	2.188 2.193	2.193
30	020	890	1.457	1.935	1.953	30	947	866	1.615	2.193	2.198 2.203
40 50	019 017	890 889	1.459	1.939	1.957	40	945	865	1.618	2.202	2.208
49 00	016	880	1.462 1.464		1.961 1.964	50 59 00	944	865	1.621	2.207	2.213
10	0 15	888	1.467	1.951	1.968	10	943 942	864 864	1.624 1.627	2.212 2.217	2.217 2.222
20	013	888	1.469	1.955	1.972	20	941	864	1.630	2.222	2.227
30 40	012 011	888 887	I.472 I.475	1.959 1.963	1.975 1.979	30	939	863	1.632	2.227	2.232
50	010	887	I.477		1.983	40 50	938 937	863 863	1.635 1.638	2.232	2.237
50 00	008	886	1.480	1.971	1.987	60 00	936	862	1.641	-	2.242 2.247
1	l						-		•		· /

TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE, [Derivation and use of table explained on p. lx.]

ø	<i>a</i> 1	$b_1 = c_I$	<i>a</i> 2	<i>b</i> 2	<i>c</i> ₂	φ	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	b2	<i>c</i> 2
60°00′	8.50936	8.50862	1.641	2.242	2.247	70°00′	8.50877	5.50842	1.841	2.607	2.608
10 20	935 934	862 861	1.644 1.647	2.247 2.253	2.252	10 20	876 875	842 842	1.845 1.849	2.61 5 2.622	2.616
30	933	861	1.650	2.258	2.262	30	875	842	1.853	2.630	2.631
40	932 931	861 860	1.653 1.656	2.263 2.268	2.267 2.272	40 50	874 873	841 841	1.857 1.861	2.637 2.645	2.638 2.646
50 61 00	931	860	1.659	2.273	2.277	71 00	872	841	1.865	2.653	2.653
10	928	860	1.662	2.279	2.283	10 20	871 871	841 840	1.869 1.873	2.661 2.668	2.661 2.669
20 30	927 926	859 850	1.665 1.668	2.284 2.289	2.200	30	870	840 840	1.877	2.676	2.677
40	925	8 59 8 58	1.671	2.295	2.298	40	869	840	1.881 1.886	2.684	2.685
50 62 00	924 923	858 858	1.674 1.677	2.300 2.305	2.303 2.309	50 72 00	868 868	840 839	1.800	2.692 2.701	2.693 2.701
10	923	857	1.680	2.311	2.314	10	867	839	1.894	2.709	2.709
20	921	857	1.683 1.686	2.316	2.320	20	866 865	839	1.898 1.903	2.717 2.725	2.718 2.726
30 40	920 919	857 856	1.689	2.322	2.325 2.330	30	865	839 838	1.907	2.734	2.734
50	918	856	1.692	2.333	2.336	50	864 863	838	1912 1.916	2.742 2.751	2.742
63 00 10	917	856 855	1.695 1.698	2.338 2.344	2.341 2.347	73 00 10	862	838 838	1.910	2.760	2.751 2.760
20	915	855	1.701	2.350	2.352	20	862	837	1.925	2.769	2.769
30 40	913 912	855 854	1.704 1.708	2.355	2.358	30 40	861 860	837 837	1.930 1.935	2.777 2.786	2.778 2.787
50	911	854	1.711	2.367	2.369	50	860	837	1.939	2.795	2.796
64 00 10	910 909	854 853	1.714	2.373 2.378	2.375 2.381	74 OO IO	859 858	836 836	1.944 1.949	2.804 2.814	2.805 2.814
20	909	853	1.720		2.387	20	858	836	1.954	2.823	2.823
30	907	853	1.724	2.390	2.392 2.398	30 40	857 856	836 836	1.958 1.963	2.832 2.842	2.833 2.842
40		852	1.727		2.404	50	856	835	1.968	2.851	2.852
65 00	904	852	1.733			75 00	855 854	835 835	1.973 1.978	2.861 2.871	2.861 2.871
10	/ / /	851 851	I.737 I.740		1 1	20	854	835	1.984	2.881	2.881
30	901	851	1.743			30	853 852	834 834	1.989	2.891 2.901	2.891 2.901
40			1.747 1.750			40 50		834	1.994	2.911	2.912
66 00	899	850	1.7 53	2.445	2.446	76 00	851 851	834	2.005	2.922 2.932	2.922 2.933
10	1 6	849 849	1.757			IO 20	850	834 833	2.010	2.932	2.933
30		849	1.764	2.464	2.465	30	849	833	2.021	2.954	2.954
40			1.767			40	849 848	833 833	2.027	2.965	2.965 2.976
67 00		848	1.774	2.48	2.484	77 00	848	833	2.038	2.987	2.987
10			1.778	2.489 2.496		10		832 832	2.044	2.998	
20	-	847	1.785		1	30	846	832	2.056	3.021	3.021
40	889		1.788			40 50		832 832	2.062	3.033	3.033
68 00		846	1.792			78 00	844	832	2.074	3.057	3.057
10	887	846	1.799	2.529	2.531	10	844	831	2.080	3.069	
20			1.803			30	843	831	2.093	3.094	3.094
40	884	845	1.810	2.550	2.551	40	842		2.099		
50 69 00						79 00	841	831	2.113	3.133	3.133
1 10	881	844	1.821	2.571	2.572	10	841	830	2.119		3.146 3.160
20			1.82			20			2.120	3.174	3.174
30	bl 879	843	1.833	2.593	2.594	40	839	830	2.140	3.188	3.188
50		843	1.837	2.600		80 00			2.148		
70 00	877	042	1.041	2.00/	2.000		- 39				<u> </u>
1-man										_	

SMITHSONIAN TABLES.

S . De Later 1 .

TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]

					_
1					
Latitude	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.
Interval.	0°	IO	2°	3°	4°
				Ŭ	
	Feet.	Feet.	Feet	Feet.	Feet.
		1	1	1	
10//	1007.66	1007.66	1007.67	1007.68	1007.71
20	2015.31	2015-32	2015.34	2015-37	2015.41
30	3022.97	3022.98	3023.01	3023,06	3023.12
40	4030.63	4030.64	4030.68	4030.74	4030.83
50	5038.28	5038.30	5038.35	5038.42	5038.54
60	6045.94	6045.96	6046.02	6046.11	6046.24
~	0043.94	0043.90	0040.02	0040111	0040124
10/	60.000	60.006	60460.2	60461.1	604624
20	60459.4 120918.8	60459.6	00400.2	00401.1	60462.4 120924.8
	120010.0	120919-2	120920.4	120922.2	120924.0
30	181378.3 241837.7	181378.8	181380.6	181383.3	181387.3
40	241837.7	241838.4	241840.8	241844.4	241849.7
50	302 297. 1	302298.0	302301.0	302305.5	302312.1
60	362756.5	362757.6	362761.2	362766.6	362774.5
	5°	6°	7°	<u>8</u> °	9°
	3	Ĭ	/	, v	7
		I	-		
10//	1007.73	1007.77	1007.81	1007-86	1007.91
20	2015.47	2015.54	2015.62	2015.71	2015.82
30	3023.20	3023.31	3023.43	3023.56	3023.72
40	4030.94	4031.08	4031.24	4031.42	4031.63
50	5038.67	5038.84	5039.04	5039.28	5039.54
60	6046.41	6046.6T	6046.85	6047.13	6047.45
10/	60464.1	60466, 1	60468.5	60471.3	60474.5
20	120928.2	120932.3	120937-1	120942.6	120949.0
30	181392.3	181398.4	181405.6	181413.9	181423.4
40	241856.4	241864.6	241874.2	241885.2	241897.9
50	302 320-5	20112004.0	2410/4-2	200216 1	202272
60	302320.5	302330.7 362796.8	302342.7	302356.5	302372.4
	362784.6	302790.0	362811.2	362827.8	362846.9
	10 ⁰	110	12 ⁰	13°	14°
	·				
10//	1007.05	1008 05	1009 15	1008.18	roof of
	1007.97	1008.03	1008.10		1008.26
20	2015.93	2016.06	2016.20	2016.35	2016.51
30	3023.00	3024.09	3024.30	3024.52	3024.77
40	4031.86	4032.12	4032.40	4032.70	4033.02
50	5039.83	5040.15	5040.50	5040.88	5041.28
60	6047.80	6048.18	6048.60	6049.05	6049.54
. 1					
10/	60478.0	60481.8	60486.0	60490.5	60495.4
20	120955.9	120963.6	120972.0	120981.0	120990.7
30	181433.9	181445.4	181458.0	181471.5	12099 0.7 181486.1
40	241911.8	241927.2	241944.0	241962.0	241081.4
50 60	302389.8	302400.0	302430.0	302452.5	241981.4 302476.8
60	362867.8	302409.0 362890.8	362916.0	362943.0	362972.2
	<u> </u>	<u> </u>	5 ,		5
	7.00	16°	T~0	18°	100
	1 5°	10	17°	10.	19 ⁰
10//	1008.34	1008.44	1008.53	1008.63	1008.74
20	2016.69	2016.87	2017.06	2017.27	1008.74 2017.48
30	3025.03	3025.30	3025.60	3025.90	3026.23
40	4033.37	4033.74	4034.13	4034.54	4034.97
50	5041.72	4033.74 5042.18	5042.66	4034.54 5043.18	5043.71
60	6050.06	6050,61	6051.19	6051.81	6052.45
10/	60500.6	60506,1	60511.9	60518.1	60524.5
			121023.8	121036.2	121049.0
20	121001,2	121012.2			181573.6
	121001.2	121012.2	181525.8	181554.2	
30	181501.7	181518.3	181535.8	181554.3	242008 1
30 40	181501.7 242002.3	181518.3 242024.4	181535.8 242047.7	181554.3 242072.4	242098.1
30 40 50	181501.7 242002.3 302502.9	181518.3 242024.4 302530.5	181535.8 242047.7 302559.6	181554.3 242072.4	242098.1 302622.6
30 40	181501.7 242002.3	181518.3 242024.4	181535.8 242047.7	181554.3	242098.1
30 40 50	181501.7 242002.3 302502.9 363003.5	181518.3 242024.4 302530.5 363036.6	181535.8 242047.7 302559.6 363071.5	181554.3 242072.4 302590.5 363108.6	242098.1 302622.6 363147.1
30 40 50	181501.7 242002.3 302502.9	181518.3 242024.4 302530.5	181535.8 242047.7 302559.6	181554.3 242072.4 302590.5 363108.6	242098.1 302622.6
30 40 50 60	181501.7 242002.3 302502.9 363003.5	181518.3 242024.4 302530.5 363036.6 21 ⁰	181535.8 242047.7 302559.6 363071.5	181554.3 242072.4	242098.1 302622.6 363147.1
30 40 50	181501.7 242002.3 302502.9 363003.5	181518.3 242024.4 302530.5 363036.6 21 ⁰	181535.8 242047.7 302559.6 363071.5	181554.3 242072.4 302590.5 363108.6	242098.1 302622.6 363147.1 24 ⁰
30 40 50 60	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86	181518.3 242024.4 302530.5 363036.6 21 ⁰ 1008.97	181535.8 242047.7 302559.6 363071.5 22 ⁰	181554.3 242072.4 302590.5 363108.6 23 ⁰	242098.1 302622.6 363147.1 24 ⁰
30 40 50 60 10// 20	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71	181518.3 242024.4 302530.5 363036.6 21 ⁰ 1008.97 2017.05	181535.8 242047.7 302559.6 363071.5 22 ⁰ 1000.10 2018.19	181554.3 242072.4 302590.5 363108.6 23 ⁰ 1000.22 2018.44	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70
30 40 50 60 10'' 20 30	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71 3026.56	181518.3 242024.4 302530.5 363036.6 21 ⁰ 1008.97 2017.95 3026.92	181535.8 242047.7 302559.6 363071.5 22 ⁰ 1000.10 2018.19 3027.28	181554.3 242072.4 302590.5 363108.6 23 ⁰ 1000.22 2018.44 3027.66	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06
30 40 50 60 10 ¹¹ 20 30 40	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71 3026.56 4035.42	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.89	181535.8 242047.7 302559.6 363071.5 22 ⁰ 1000.10 2018.10 3027.28 4036.38	181554.3 242072.4 302590.5 363108.6 23 ⁰ 1000.22 2018.44 3027.66 4036.88	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41
30 40 50 60 10'' 20 30 40 50	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71 3026.56 4 ^{035.42} 5044.28	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.80 5044.86	$ \begin{array}{r} 181535.8\\242047.7\\302559.6\\363071.5\\\hline 222^{0}\\\hline 1000.10\\2018.19\\3027.28\\4036.38\\5045.48\end{array} $	181554.3 242072.4 302590.5 363108.6 230 1000.22 2018.44 3027.66 4036.88 5046.10	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76
30 40 50 60 10 ¹¹ 20 30 40	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71 3026.56 4035.42	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.89	181535.8 242047.7 302559.6 363071.5 22 ⁰ 1000.10 2018.10 3027.28 4036.38	181554.3 242072.4 302590.5 363108.6 23 ⁰ 1000.22 2018.44 3027.66 4036.88	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41
30 40 50 60 10 ¹¹ 20 30 40 50 60	181501.7 242002.3 302502.9 363003.5 20 ⁰ 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13	181518.3 242024.4 302530.5 303036.6 21 ⁰ 1008.97 2017.95 3026.92 4035.89 5044.86 6053.84	181535.8 242047.7 302559.6 303071.5 22 ⁰ 1000.10 2018.19 3027.28 4036.38 5045.48 6054.57	181554.3 242072.4 302590.5 363108.6 23 ⁰ 1000.22 2018.44 3027.66 4036.88 5046.10 6055.33	242008.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11
30 40 50 60 10 ¹¹ 20 30 40 50 60 10 ¹	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13	181518.3 242024.4 302530.5 303036.6 21 ⁰ 1008.97 2017.95 3026.92 4035.89 5044.86 6053.84	181535.8 242047.7 302559.6 363071.5 220 2025 1000,10 2018.19 3027.28 4036.38 5045.48 6054.57 60545.7	181554.3 242072.4 302590.5 363108.6 230 1009.22 2018.44 3027.66 4036.88 5046.10 6055.33 60553.3	242098.1 302622.6 363147.1 24 ⁰ 1000-35 2018.70 3028.06 4037.41 5046.76 6056.11
30 40 50 60 10 ¹¹ 20 30 40 50 60 10 ¹ 20	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 f00531.3 121062.6	181518.3 242024.4 302530.5 363036.6 21 ⁰ 1008.97 2017.95 3026.92 4035.89 5044.86 6053.84 121076.8	181535.8 242047.7 302559.6 363071.5 220 1000.10 2018.19 3027.28 4036.38 5045.45 6054.57 121001.4	181554.3 242072.4 302590.5 363108.6 230 1000,22 2018.44 3027.66 4036.88 5046.10 6055.33 6055.33	242008.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11 121122.2
30 40 50 60 10 ¹¹ 20 30 40 50 50 50 10 ¹ 20 30	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 60531.3 121062.6 181593.9	181518.3 242024.4 302330.5 363036.6 210 1008.97 2017.95 3026.92 4035.89 5044.86 6053.84 6053.84 6053.84 121076.8	181535.8 242047.7 302559.6 303071-5 220 1000.10 2018.10 3027.28 4036.38 5045.48 6054.57 60545.7 121001.4 181637.1	181554.3 242072.4 302590.5 363108.6 230 1009.22 2018.44 3027.66 4036.88 5046.10 6055.33 60553.3 121106.5 121106.5	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11 121122.2 181683.4
30 40 50 60 10 ⁴⁷ 20 30 40 50 60 10 ⁴ 20 30 40	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 121062.6 181593.9 242125.2	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.89 5044.86 6053.8.4 121076.8 181675.1 242153.5	181535.8 242047.7 302559.6 303071-5 220 1000,10 2018.10 3027.28 4036.38 5045.48 5045.48 5045.457 121001.4 181637.1	181554.3 242072.4 302590.5 363108.6 230 1000,22 2018.44 3027.66 4036.88 5046.10 6055.33 6055.33	242098.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11 121122.2 181683.4
30 40 50 60 10 ¹¹ 20 30 40 50 50 10 ¹ 20 30 40 50	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 6053.13 121062.6 181593.9 242125.2 302656.5	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.02 4035.89 5044.86 6053.84 121076.8 181615.1 242153.5 302691.9	181535.8 242047.7 302559.6 302559.6 303071-5 220 1000.10 2018.19 3027.28 4036.38 5045.48 6054.57 60545.7 121001.4 181637.1 242182.8 302728.5	181554.3 242072.4 302590.5 363108.6 230 1009.22 2018.44 3027.66 4036.88 5046.10 6055.33 60553.3 121106.5 121106.5	242008.1 302622.6 363147.1 24 ⁰ 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11 121122.2
30 40 50 60 10 ⁴⁷ 20 30 40 50 60 10 ⁴ 20 30 40	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 121062.6 181593.9 242125.2	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.89 5044.86 6053.8.4 121076.8 181675.1 242153.5	181535.8 242047.7 302559.6 303071-5 220 1000,10 2018.10 3027.28 4036.38 5045.48 5045.48 5045.457 121001.4 181637.1	181554.3 242072.4 302590.5 363108.6 230 1000,22 2018.44 3027.66 4036.88 5046.10 6055.33 60553.3 121106.5 181659.8 242213.0	242098.1 302622.6 363147.1 240 1009.35 2018.70 3028.06 4037.41 5046.76 6056.11 6056.11 121122.2 181683.4 242244.5 30280.5.6
30 40 50 60 10 ¹¹ 20 30 40 50 60 10 ¹ 20 30 40 50	181501.7 242002.3 302502.9 363003.5 200 1008.86 2017.71 3026.56 4035.42 5044.28 6053.13 6053.13 121062.6 181593.9 242125.2 302656.5	181518.3 242024.4 302530.5 363036.6 210 1008.97 2017.95 3026.92 4035.89 5044.86 6053.84 121076.8 181615.1 242153.5 302691.9	181535.8 242047.7 302559.6 302559.6 303071-5 220 1000.10 2018.19 3027.28 4036.38 5045.48 6054.57 60545.7 121001.4 181637.1 242182.8 302728.5	181554.3 242072.4 302590.5 363108.6 230 10009.22 2018.44 3027.66 4036.88 5046.10 6055.33 6055.33 121106.5 181659.8 242213.0 302766.3	242098.1 302622.6 363147.1 24 ⁰ 1000.35 2018.70 3028.06 4037.41 5046.76 6056.11 121122.2 181683.4 242244.5

TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]

Latitude Interval		Latitude. 26°	Latitude. 27 ⁰	Latitude. 280	Latitude. 29 ⁰
	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1009.49	1009.63	1009.77	1009.92	1010.07
20	2018.97		2019.54	2019.83	2020.13
30	3028.46	2019.25 3028.88	3029.31	3029.75	3030.20
40 50	4037.95	4038.51 5048.13	4039.08 5048.85	4039.67	4040.27
60	5047.44 6056.92	6057.76	6058.62	5049.58 6059.50	5050.33 6060.40
			-		
10/	60569.2	60577.6	60586.2	60595.0	60604.0
20 30	121138.5	121155.2	121172.3 181758.5	121190.0 181785.0	121208.0 181812.0
40	242276.9		242344.7	242379.9	242416.0
50	302846.1	242310.3 302887.9	302930.9	302974.9	303019.9
60	363415.4	363465.5	363517.1	363569.9	363623.9
	30°	310	32 ⁰	33°	34°
10//	1010.22	1010.38	1010.54	1010.70	1010.86
20	2020.44	2020.75	2021.07	2021.40	2021.73
30	3030.66	3031.13	3031.61	3032.10	3032.59
40 50	4040.88 5051.10	4041.51 5051.89	4042.15 5052.68	4042.80 5053.50	4043.46 5054.32
60	6061.32	6062.26	6063.22	6064.20	6065.19
10/	60613.2	60622.6	60632.2	60642.0	60651.9
20	121226.4	121245.3	121264.4	121283.9	121303.8
30	181839.7	181867.9	181896.6	181925.9	181955.7
40	242452.9	242490.5	242528.8	242567.9	242607.6
50 60	303066.1 363679.3	303113.2 363735.8	303161.1 363793.3	303209.9 363851.8	303259.4 363911.3
		360	37°	380	39°
	35°				- 39
10//	1011.03	1011.20	1011.37	1011.55	1011.72
20 30	2022.06 3033.10	2022.40 3033.61	2022.75 3034.12	2023.09 3034.64	2023.44 3035.17
40	4044.13	4044.81	4045.50	4046.19	4046.89
50	5055.16	5056.01	4045.50 5056.87	5057.74	5058.61
60	6066.19	6067.21	6068.24	6069.29	6070.34
10/	60661.9	60672.1	60682.4	60692.9	60703.4
20	121323.9	121344.3	121364.9	121385.7	121406.7
30 40	181985.8 242647.8	182016.4 242688.5	182047-3 242729-7	182078.6 242771-4	182110.1 242813.4
50	303309.7	303360.6	303412.2	303464.3	303516.8
<u> 6</u> 0	363971.7	364032.8	364094.6	364157.1	364220.2
	40°	41 ⁰	42 ⁰	43°	44°
10//	1011.90	1012.08	1012.25	1012.43	1012.61
20	2023.80	2024.15	2024.51	2024.87	2025.23
30 40	3035.70 4047.60	3036.23 4048.31	3036.77 4049.02	3037.30 4049.74	3037.84 4050.46
50	5059.50	5060.38	5061.28	5062.17	5063.07
δο	6071.39	6072.46	6073.53	6074-61	6075.69
10/	60713.9	60724.6	60735.3	60746.1	60756.9
20	121427.9	121449.2	121470.6	121492.2	121513.7
30	182141.8	182173.8 242898.4	182206.0 242941.3	182238.2 242984-3	182270.6 243027.4
40 50	242855.8 303569.7	303623.0	303676.6	303730.4	303784.3
60	364283.7	364347.6	364411.9	364476.5	364541.2
	45°	46°	47°	48°	49°
10//	1012.79	1012.97	1013.15	1013.33	1013.51
20	2025.59	2025.95	2026.31	2026.67	2027.02
30	3038.38	3038.92	3039.46	3040.00	3040.54
40	4051.18	4051.90 5064.87	4052.62 5065.77	4053-34 5066-67	4054.05 5067.56
50 60	5063.97 6076.77	6077.85	6078.93	6080.00	6081.08
10/	60767.7	60778.5	60789.3	60800.0	60810.8
20	121535-3	121556.9	121578.5	121600.1	121621.5
30	182303.0	182335-4	182367.8 243157.0	182400.1 243200.1	182432.3 243243.0
40 50	243070.6	243113.9 303892.4	303946.3	304000. I	304053.8
		364670.8	364735-5	364800.2	364864.5
60	364606.0	3040/0.0	3-4733-5	3-4	0.4

TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]

[
Latitude Interval.	Latitude. 500	Latitude. 51°	Latitude. 52°	Latitude. 53°	Latitude. 54°	Latitude. 55°
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1013.69	1013.87	1014.04 2028.09	1014.22 2028.44	1014.39 2028.78	1014.56 2029.12
20 30	2027.38 3041.07	2027.74 3041.60	3042.13	3042.65	3043.17	3043.68
40	4054.76 5068.46	4055.47 5069.34	4056.17 5070.22	4056.87 5071.09	4057.56 5071.96	4058.24 5072.80
50 60	6082.15	6083.21	6084.26	6085.31	6086.35	6087.37
10/	60821.5	60832.1	60842.6	60853.1	60863.5	60873.7
20	121642.9	121664.2	121685.2	121706.2	121726.0	121747.3
30 40	182464.4 243285.8	182496.2 243328.3	182527.7 243370.3	182559.2 243412.3	182590.4 243453.8	182621.0
50	304107.3	304160.4	304212.9	304265.4	304317.3	243494.6 304368.3
60	364928.8	364992.5	365055.5	365118.5	365180.8	365242.0
	56°	57°	580	59°	60°	610
10//	1014.73	1014.90	1015.06	1015.22	1015.38	1015.53
20 30	2029.46 3044.19	2029.79 3044.69 *	2030.12 3045.18	2030.44 3045.66	2030.76 3046.14	2031.07 3046.60
40	4058.92	4059.58	4060.24	4060.88	4061.52	4062.14
50 60	5073.65 6088.38	5074.48 6089.38	5075.30 6090.36	5076.10 6091.33	5076.90 6092.27	5077.67 6093.20
	-					
10 [/] 20	60883.8 121767.6	60893.8 121787.5	60903.6 121807.2	60913.3 121826.5	60922.7 121845.5	60932.0 121864.1
30	182651.4	182681.3	182710.8	182739.8	121845.5 182768.2	182796.1
40 50	243535-2 304419.0	243575.0 304468.8	243614.4 304518.0	243653.0 304566.3	243691.0 304613.7	243728.2 304660.2
őo	365302.8	365362.6	365421.6	365479.6	365536.4	365592.2
	62°	63°	64 °	65°	66°	67°
10//	1015.69	1015.83	1015.98	1016.12	1016.26	1016.39
20 30	2031.37	2031.67	2031.96	2032.24 3048.36	2032.51	2032.78
40	3047.06 4062.74	3047.50 4063.34	3047.94 4063.92	4064.48	3048.77 4065.02	3049.16 4065.55
50 60	5078.43	5079.17	5079.90	5080.60 6096.71	5081.28	5081.94
	6094.12	6095.00	6095.87		6097.54	6098.33
10 [/] 20	60941.2 121882.3	60950.0 121900.1	60958.7 121917.5	60967.1 121934.3	60975.4 121950.7	60983.3 121966.6
30	182823.5	182850.1	182876.2	182001.4	182926.1	182949.8
40 50	243764.6 304705.8	243800.2 304750.2	243835.0 304793.7	243868.6 304835.7	243901.4 304876.8	243933.1
60	365647.0	365700.2	365752.4	365802.8	365852.2	304916.4 365899.7
	68°	69°	70 ⁰	710	7 2 ⁰	73°
10//	1016.52	1016.64	1016.76	1016.87	1016.98	1017.09
20 30	2033.03 3049.55	2033.28 3049.92	2033.52 3050.28	2033.75 3050.62	2033.96 3050.95	2034.17 3051.26
40	4066.07	4066.56	4067 04	4067.49	4067.93	4068.34
50 60	5082.58 6099.10	5083.20 6199.84	5083.80 6100.55	5084.36 6101.24	5084.91 6101.89	5085.43 6102.52
10/	60991.0	61998.4	61005.5	61012.4	61018.9	61025.2
20 30	121982.0 182973.1	121996.8 182995.2	122011.1 183016.6	122024.8 183037.1	122037.8 183056.8	122050.3 183075-5
40	243964.1	243993.6	244022.2	244049.5	244075.7	244100.6
50 60	304955.1 365946.1	304992.0 365990.4	305027.7 366033.2	305061.9 366074.3	305094.6 366113.5	305125.8 366151.0
	74°	75°	76°	77° 1	780	79°
20	1017.18 2034.37	1017.28 2034.56	1017.37 2034.73	1017.45 2034.90	1017.53 2035.05	1017.60 2035.19
30	3051.56	3051.84	3052.10	3052.35	3052.58	3052.70
40 50	4068.74 5085.92	4069.12 5086.40	4069.46 5086.83	4069.80 5087.24	4070.10 5087.63	4070.38 5087.98
60	6103.11	6103.67	6104.20	6104.69	6105.16	6105 .5 8
10 [/] 20	61031.1 122062.2	61036.7 122073.5	61042.0 122083.9	61046.9	61051.6	61055.8
30	183093.3	183110.2	183125.9	122093.9 183140.8	122103.1 183154.7	122111.5 183167.3
40 50	244124.4 305155.5	244147.0 305183.7	244167.8	244187.8	244206.2	244223.0
60	366186.6	366220.4	305209.8 366251.8	305234.7 366281.6	305257.8 366309.4	305278.8 366334.6
<u> </u>					5 5 7.7	5054.0

TABLE 18. LENCTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

Tanaiman	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.
Longitude Interval.	O ^O	I ⁰	2 ⁰	3°	4°
Anici vuli	Ţ	-	-	5	7
	Feet.	Feet.	Feet.	Feet.	Feet.
10 ^{//}	1014.52	1014.37	1013.91	1013.14	1012.07
20	2029.05	2028.74	2027.82	2026.29	2024.14
30 40	3043.57 4058.10	3043.11 4057.48	3041.73 4055.64	3039-43 4052-57	3036.21 4048.28
40 50	5072.62	5071.86	5069.55	5065.72	5060.35
60	6087.14	ŏo86.23	6083.46	5065.72 6078.86	6072.42
		60862.3	6-0-1	6	6
10 ⁷ 20	60871.4 121742.9		60834.6 121669.2	60788.6 121577.2	60724.2 121448.4
30	182614.3	121724.5 182586.8	182503.8	182305.7	182172.6
40	243485.8	243449.0	243338.4	243154.3	242896.8
50	304357.2	304311.3	304173.0	303942.9	303621.0
60	365228.6	365173.6	365007.6	364731.5	364345.2
	5°	6°	7°	8°	9°
	3				9
10//	1010.69	1009.00	1007.01	1004.72	1002.12
20	2021.38	2018.01	2014.03	2009.43	2004.23
30	3032.07	3027.01	3021.04	3014.15	3006.35
40	4042.76	4036.02	4028.05 5035.06	4018.87 5023.58	4008.47 5010.58
50 60	5053.45 6064.14	5045.02 6054.02	6042.08	6028.30	6012.70
				-	
10/	60641.4	60540.2	60420.8	60283.0	60127.0
20	121282.8	121080.5 181620.7	120841.6 181262.3	120566.0 180849.1	120254.0 180381.1
30 40	181924.2 242565•6	101020.7 242161.0	241683.1	241132.1	240508.1
50	303207.0	302701.2	302103.9	301415.1	300635.1
60	363848.4	363241.4	362524.7	361698.1	360762.1
				0	
	100	110	1 2 ⁰	1 3°	14 ⁰
10//	999.21	996.01	992.50	988 69	984.58
20	1998.43	1992.01	1985.00	1977.38	1969.17
30	2997.64	2988.02	2977.50	2966.07	2953.75
40	3996.85	3984.03	3970.00	3954.76	3938.34
50 60	4996.06 5995.28	4980.04 5976.04	4962.50 5955.00	4943.46 5932.15	4922.92 5907.50
	5995.20	5970.04	3953100		3707-3-
10/	59952.8	59760.4	59550.0	59321.5 118642.9	59075.0
20	1 19905.6	119520.8	119100.0	118042.9	118150.1
30	179858.3 239811.1	179281.3	178650.0 238200.0	177964.4 237285.8	177225.1 236300.2
40 50	299763.9	239041.7 298802.1	2977 50.0	296607.3	295375.2
60	359716.7	358562.5	357300.0	296607.3 355928.8	354450.2
	0	160		18º	
	1 5°	10-	17 ⁰	10	19°
10//	980.18	975-47	970.48	965.18	959.60
20	1960.35	1950.95	· 1940.95	1930.36	1919.19 2878.79
30	2940.53	2926.42	2911.42 3881.90	2895.55 3860.73	2878.79 3838.38
40	3920.71 4900.88	3901.90	4852.38	4825-91	4797.98
50 60	5881.06	4877.37 5852.84	4852.38 5822.85	5791.09	5757.58
i	r 99		58228.5	57910.9	57575.8
10 [/] 20	58810.6 117621.2	58528.4 117056.9	116457.0	115821.8	115151.5
30	176431.9	175585.3	174685.5	173732.8	172727.3
40	235242.5	175585.3 234113.8	232914.0	231643.7	230303.0 287878.8
50 60	294053.1	292642.2	291142.5 349371.0	289554.6 347465.5	287878.8 345454.6
	352863.7	351170.6		·	
	20 ⁰	21 ⁰	22 ⁰	23°	24 ⁰
10//	953.72	947-55	941.10	934.36	927-33
20	1907.44	1895.10	941.10 1882-19	1868.71	1854.67
30	2861.15	2842.66	2823.29	2803.07	2782.00
40	3814.87 4768,59	3790.21	3764.38	3737-43 4671.78	3709-33 4636-66
50 60	4768,59 5722.31	4737.76	4705.48 5646.58	5606.14	5564.00
	5/22.31	5003.31			
10/	57223.1	56853.I	56463.8	56061.4	55640.0
20	114446.2	113706.2	112931.5	112122.8	111280.0
30 40	171669.2	170559.4	169397.3 225863.0	224245.7	222559.9
40 50	286115.4	284265.6	282328.8	280307.1	278199.9
60	343338.5	341118.7	338794.6	336368.5	333 ⁸ 39-9
L			1		·

TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lougitude Interval.	Latitude. 25°	Latitude. 26 ⁰		Latitude. 28°	Latitude. 29 ⁰
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Feet.	Feet.	Feet.	Feet.	Feet.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10//	020.03	912.44	904.58	896.44	888.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1840.05	1824.88	1809.16	1792.88	1776.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	2760.08		2713.74	2089.32	2004.09
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40			4522.80	4482.20	4440.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60	5520.17	5474.65		5378.64	5328.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					F 1786 4	67987 8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		55201.7		54274-7		106563.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		165605.0		162824.2	161359.3	159845.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40	220806.6	218986.1		215145.7	213127.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				271373.7	322718.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		30°	310	32°	33°	34°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		879.35	870.40			841.97
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1758.70	1740.80	1722.37		2525.01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					3406.83	3367.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4396.74	4351.99	4305.92	4258.53	4200.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5222.39		5110.24	5051.82
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		52760.9	52223.9		51 102.4	50518.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	105521.8	104447.8	103342.1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	158282.0	150071.8	206684.2		202072.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	263804.4	261119.6		255512.1	252591.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ğо			310026.3	306614.5	303109.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		35°		37°	3 ^{8°}	39°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10//	831.08	821.73	811.23	800.48	789.49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		1643.46	1622.46	1600.97	1578.98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2465.19	2433.69		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3327.91	3200.91	3244.92		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	4991.86				4736.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10/	49918.6	49303.7	48673.8	48029.0	47369.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		99837.2	98607.4	97347.6		94739.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	149755.8				142108.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40		246518.6		240145.0	236847.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	2.)9511.5	295822.3	292042.8	288174.0	284217.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40°	41°	42 ⁰	43°	44 ⁰
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10//	778.26	766.70	7.55.08	743.15	7 10.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1556.52	1533.58	1510.17	1486.29	1461.96
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2334.78	2300.37	2265.25	2229.44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3813.04		3715.77	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60			4530.50	4458.88	4385.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			46007.3	45305.0	44588.8	43858.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		93391.2	92014.7		89177.0	87717.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			184029.3		178355.2	175435.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	233477.9	230036.7	226525.0	222944.0	219294.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		280173.5	276044.0	27 1830.1		263153.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		45°	46°	47 [°]	48°	49°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		718.59	705.99			666.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1437.19		1386.32		1333.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	2874.18		2079.48		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	3592.97		3465.80	3400.61	
20 86231.3 84718.2 83179.2 81614.6 80024.9 30 129346.9 127077.3 124768.7 122421.9 120037.4 49 172462.5 169436.5 166358.3 163229.2 160049.9 50 215578.2 211795.6 20747.9 204036.4 200062.3	60	4311.56	4235.91	4158.96	4080.73	
30 123340.9 127077.3 124708.7 122421.9 120037.4 40 172405.5 169436.5 16058.3 163229.2 160049.9 50 215378.2 211795.6 207947.9 204036.4 200062.3		43115.6	42359.1 84718.2	41589.6	40807.3 81614.6	40012.5
40 172462.5 169436.5 166358.3 163229.2 160049.9 50 215578.2 211795.6 207947.9 204036.4 200062.3	30	129346.9	127077.3	124768.7	122421.9	120037.4
			169436.5	166358.3	163229.2	160049.9
	60	258603.8		207947.9		
	L	1			1	/4.0

LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

Lougitude Interval.	Latitude. 50 ⁰	Latitude. 51°	Latitude, 52°	Latitude. 53°	Latitude. 54 ⁰	Latitude. 55°
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10//	653.42 1306.85	639.77	625.92	611.88	597.65	583.23
20 30	1306.85 1960.27	1279-54 1919-31	1251.84 1877.76	1223.76 1835.63	1 195.30	1166.47
40	2613.69	2559.08	2503.68	2447.51	1792.94 2390.59	1749-70 2332.93
50 60	3267-12 3920-54	3198.85 3838.62	3129.60 3755.52	3059.39 3671.27	2988.28 3585.89	2916-16 3499-40
10 [/] 20	39205.4 78410.8	38386.2 76772.4	37555.2 751 10.4	36712.7 73425-4	35858.9 71717.8	34994.0 69988.0
30	117616.1	115158.6	112665.6	110138.0	107576.6	104981.9
40 50	156821.5 196026.9	153544.8 191931.0	150220.8 187776.0	146850.7 183363.4	143435-5 179294-4	139975-9 174969.9
60	235232.3	230317.2	225331.2	220276.1	215153.3	209963.9
	56°	57°	5 8°	59°.	60°	61°
10//	568.64	553.87	538.93	523.82	508.55	493.13
20 30	1137.28 1705.92	1107.74 1661.61	1077.86 1616.79	1047.65 1571.47	1017-11 1525.66	986,26 1479.38
40 50	2274.56 2843.20	2215.48 2769.35	2155.72 2694.64	2095.29	2034.22	1972.52
50 60	3411.83	3323.22	3233.57	2619.12 3142.94	2542.77 3051.33	2465.64 2958.77
10/	34118.3	33232.2	32335.7	31429.4	30513.3	29587.7
20 30	68236.7 102355.0	66464.4 99696.6	64671.5 97007.2	62858.8 94288.1	61026.6 91539 -9	59175-5 88763.2
40	136473.4	132928.8	120343.0	125717.5	122053.2	118351.0
50 60	170591.7 204710.0	166161.0 199393.2	161678.7 194014.4	157146.9 188576.3	152566.5 183079.8	147938.7 177526.4
— —	62°		 64°		66°	
		63°		65°		67°
10 ^{//} 20	477-55 955. 10	461.83 923.65	445.96 891.92	429 .95 859.91	413.82 827.63	397-55 795-10
30	1432.66	1385.48	1337.88	1289.86	1241.44	1192.64
40 50	1910.21 2387.76	1847.31 2309.14	1783.84 2229.80	. 1719.81 2149.76	1655.26 2069.08	1590.19 1987.74
60	2865.31	2770.96	2675.75	2579.72	2482.89	2385.29
10/	28653.1	27709.6	26757.5	25797.2	24828.9	23852.9
20 30	57306.2 85959.4	55419-2 83128.9	53515.1 80272.6	51594•4 77391-5	49657.8 74486.7	47705.8 71538.6
40	114612.5	110838.5 138548.1	107030.2 133787.7	103188.7	99315.6 124144.5	95411.5 119264.4
50 60	143265.6 171918.7	166257.7	160545.2	128985.9 154783.1	148973.4	143117.3
	68°	69°	70°	71°	72 ⁰	73°
10//	381.16	364.65	348.03	331.30	314.47	297-54
20 30	762.32 1143.47	729.30 1093.95	696.06 1044-09	662.60 993.90	628.94 943-41	\$95.08 892.62
40	1524.63	1458.60	1392.12	1325.20	1257.88	1190,16
50 60	1905.79 2286.95	1823.25 2187.90	1740.14 2088.17	1656.50 1987.81	1572.34 1886.81	1487 70 1785.23
10'	22869.5	21879.0	20881.7	19878.1	18868. I	17852.3
20 30	45739.0 68608.4	43758.0 65637.0	41763.5 62645.2	39756.1 59634.2	37736.3 56604.4	35704-7 53557-0
40	91477-9	87516.0	83527.0	79512.2	75472.6	71409.4
50 60	114347.4 137216.9	109395.0 131274.0	104408.7 125290.4	99390.3 119268.4	94340.7 113208.8	89261.7 107114-0
	74 [°]	7 5°	76°	77°	78°	79°
10//	280.52	263.41	246.22	228.96	211.62	194.22
20 30	561.04 841.56	526.82 790.23	492.44 738.66	457.91 686.86	423.24 634.85	388-43 582.64
40	1122.08	1053.64	984.88	915.82	846.47	776.86
50 60	1402.60 1683.11	1317.06 1580,47	1231.10 1477-33	1 144.78 1373.73	1058-09 1269.71	971.08 1165.29
10/	16831.1	15804.7	14773-3	13737-3	12697-1	11652.9
20 30	33662.3 50493.4	31609.3 47414.0	29546.5 44319.8	27474.6 41211.9	25394-2 38091-2	23305.8 34958.7
40	67324.6	63218.6	59093.0	54949.2 68686.5	50788.3 63485.4	40011.0
50 60	84155.7 100986.8	79023-3 94828.0	73866.3 88639.6	82423.8	76182.5	58264.5 69917.4
				·	I .	

TABLE 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2550000

[Derivation of table explained on pp. liii-lvi.]

Jo ,	Meridional dis- tances from even degree parallels.		CO-ORD	INATES	OF DEVI	ELOPED	PARALLI	EL FOR-	-
Latitude c parallel.	ridiona inces f ven de arallela	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	ı° lor	gitude.
Lat	N de ta e	x	У	x	У	x	у	x	у
0°00′	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
15	4.353	4.383 4.383	.000	8.766 8.766	.000 .000	13.148	000. 000.	17.531	000. 100.
30 45	8.706 13.059	4.383 4.382	.000. 000.	8.765 8.765	000. 100.	13.148 13.147	100. 100.	17.530	.001 .002
1 00	17.412	4.382	.000	8.764	.001	13.146	.001	17.528	.003
15 30	4·353 8.706	4.382 4.381	.000. 000.	8.764 8.763	100. 100.	13.145	.002 .002	17.527	.003
45	13.059	4.381	.000	8.762	.001	13.144 13.142	.002	17.525	.004 .005
2 00	17.412	4.380	.000	8.760	.001	13.141	.003	17.521	.005
15 30	4·353 8.706	4-379 4-379	.000. 000.	8.7 59 8.7 57	100. 100.	13.138 13.136	.003 .004	17.518 17.514	.006 .007
45	13.059	4.378	.000	8.755	.002	13.133	.004	17.511	.007
3 00	17.413	4-377	.001	8.753	.002	13.130	.004	17.507	.008
15 30	4·353 8.706	4.376 4.375	100. 100.	8.751 8.749	.002 .002	13.127 13.124	.005 .005	17.503 17.498	.008 .000
45	13.060	4.373	.001	8.747	.002	13.120	.00ð	17.494	.009
4 00	17.413	4-372	.001	8.744	.003	13.116	.006	17.488	.010
15 30	4·353 8.707	4.371 4.369	.001 100.	8.742 8.739	.003 .003	13.112 13.108	.006 .007	17.483 17.478	.011 .012
45	13.060	4.368	.001	8.736	.003	13.104	.007	17.472	.012
5 00	17.413	4.366	100.	8.732	.003	13.099	.007	17.465	.013
15 30	4·353 8.707	4.364 4.363	.001 .001	8.729 8.725	.003 .004	13.094 13.088	800. 800.	17.458 17.451	.014 .014
45	13.060	4.361	100.	8.722	.004	13.082	.008	17.443	.015
6 00	17.414	4.359	.001	8.718	.004	13.076	.009	17.435	.016
15 30	4·354 8.707	4·357 4·355	100. 100.	8.714 8.710	.004 .004	13.071 13.064	.009 .010	17.428 17.419	.017 .017
45	13.061	4.353	.001	8.705	.004	13.058	.010	17.419	.017
7 00	17.414	4.350	100.	8.701	.005	13.051	.010	17.4° :	.019
15 30	4·354 8.707	4.348 4.346	100. 100.	8.696 8.691	.005 .005	13.044 13.036	110. 110.	17.392 17.382	.019 .020
45	13.061	4.343	.001	8.686	.005	13.029	.011	17.372	.020
8 00	17.415	4.340	.001	8.681	.005	13.021	.01 2	17.362	.021
15 30	4·354 8.708	4.338 4.335	100. 100.	8.675 8.670	.005 .006	13.013 13.005	.012 .013	17.351 17.340	.022 .0 2 2
45	13.062	4.332	.002	8.664	.006	12.996	.013	17.328	.023
9 00	17.416	4.329	.002	8.658	.006	12.987	.013	17,316	.024
15 30	4·354 8.708	4.326 4.323	.002 .002	8.652 8.646	.006 .006	12,979 12.969	,014 .014	17,305 17.292	.024
45	13.062	4.320	.002	8.640	.006	12,960	.014	17.292	.025 .026
10 00	17.417	4.317	.002	8.633	.006	12.950	.015	17,266	.026 .
						1		1	

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2500000.

[Derivation of table explained on pp, liii - lvi.]

. of I.	ll dis- rom gree		CO-ORDI	NATES (OF DEVE	LOPED F	ARALLE	L FOR-	
Latitude o parallel.	Meridional dis- tances from even degree parallels.	15' long	gitude.	30/ long	gitude.	45' long	gitude.	ro long	gitude.
1	Mer tai Pa	x	У	x	У	x	У	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10000		4.317	.002	8.633	.006	12.950	.015	17.266	.026
15 30	4·354 8.709	4.313 4.310	.002	8.626 8.620	.007 .007	12.940 12.930	.015 .015	17.253 17.240	.027 .027
45	13.063	4.306	.002	8.613	.007	12.919	.016	17.226	.028
II 00	17.418	4.303	.002	8.606	.007	12.908	.016	17.211	.029
15	4.355	4.299	.002	8.598	.007	12.897	.016	17.196	.029
30	8.709	4.295	.002	8.591 8.583	.007	12.886	.017	17.182	.030
45	13.064	4.292	.002	8.583	.008	12.875	.017	17.166	.031
12 00	17.419	4.288	.002	8.575	.008	12.863	.017	17.150	.031
15	4.355	4.284	.002	8.567	.008	12.851	.018	17.134	.032
30	8.710	4.280	.002	8.559	800. 800.	12.839 12.826	.018 .019	17.118	.032
45	13.065	4.275	.002	8.551		12.020	.019	17.102	.033
13 00	17.420	4.27 I	.002	8.542	.008	12.813	.019	17.084	.034
15	4·355	4.267	.002	8.534	.009	12.800	.019	17.067	.034
30 45	8.711 13.066	4.262 4.258	.002	8.525 8.516	.009	12.787 12.774	.020 .020	17.050	.035 .035
14 00	17.421	4.253	.002	8.507	.009	12.760	.020	17.013	.036
15	4.356	4.249	.002	8.498	.009	12.746	.021	16.995	.036
30	8.711	4.244	.002	8.488	.009	12.732	.021	16.976	.037
45	13.067	4.239	.002	8.479	.009	12.718	,021	16,957	.037 .038
1500	17.423	4-234	.002	8.469	.010	12.703	.022	16.938	.038
15	4.356	4.229	.002	8.459	.010	12.688	.022	16.918	.ô39
30	8.712	4.224	.002	8.449	.010	12.673	.022	16.898	. 039
45	13.068	4.219	.002	8.439	.010	12.658	.022	16.877	,040
16 00	17.424	4.214	.003	8.428	.010	12.642	.0 23	16.856	.041
15	4.356	4.209	.003	8.417	.010	12.626	.023	16.835	.041
30	8.713 13.069	4.204 4.198	.003 .003	8.407 8.396	010. 110.	12.610	.023 .024	16.814 16.792	.042 ,042
45	13.009	4.190							,
17 00	17.426	4.192	.003	8.385	.011	12.577	.024	16.770	.043
15	4.357	4.187	.003	8.374 8.362	.011 .011	12.561	.024	16.748 16.725	.043
30 45	8.714	4.181	.003 .003	8.351	.011	12.544 12.526	.025 .025	16.702	.044 .044
18 00	17.427	4.170	.003	8.339	110.	12.509	.025	16.679	.045
	4 357	4.164	.003	8.327	.011	12.491	.026	16.655	.045
30	4.357 8.715	4.104	.003	8.316	.012	12.491	.026	16.631	.046
45	13.072	4.152	.003	8.303	.012	12.455	.026	16.606	.046
19 00	17.429	4.145	,003	8.291	.012	12.436	.026	16.582	.047
15	4.358	4.139	.003	8.278	.012	12.418	.027	16.557	.048
30	8.716	4.133	.003	8.266	.012	12.399	.027	16.532	.048
45	13.073	4.127	.003	8.253	.012	12.380	.027	16.506	.048
20 00	17.431	4.120	.003	8.240	.012	12.360	.028	16.480	.049
									l

SMITHSONIAN TABLES.

•

TABLE 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 11/280000

[Derivation of table explained on pp. liii-lvi.]

.	*	ul dis- om ree		CO-ORD	INATES	OF DEVI	ELOPED	PARALLI	EL FOR-	
	parallel.	Meridional dis tances from even degree parallels.	15' lor	ngitude.	30' 101	ngitude.	45' los	gitude.	r ^o lon	gitude.
	par	Men tan eve	×	У	x	у	x	у	x	у
		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20	0°00′ 15	4.358	4.120 4.114	.003 .003	8.240 8.227	.012 .012	12.360 12.340	.028 .028	16.480 16.454	.049 .050
	30 45	8.717 13.075	4.107 4.100	.003	8.214 8.200	.013 .013	12.321 12.301	.028 .029	16.428 16.401	.050 .051
21	1 00	17.433	4.094	.003	8.187	.013	12.280	.029	16.374	.051
	15	4.359 8.718	4.087	.003	8.173	.013	12.260	.029	16.346	.052
	30 45	8.718 13.076	4.080 4.073	.003 .003	8.159 8.145	.013 .013	12.239	.029 .030	16.318 16.291	.052 .053
22	2 00	17.435	4.066	.003	8.131	.013	12.197	.030	16.262	.053
	15	4.359	4.058	.003	8.117	.013	12.175	.030	16.234	.054
	30 45	8.719 13.078	4.051 4.044	.003 .003	8.102 8.088	.014 .014	12.154 12.132	.030 .031	16.205 16.176	.054 .055
23	00	17.437	4.036	.003	8.073	.014	12.109	.031	16.146	.055
	15 30	4.360 8.720	4.029 4.021	.003 .003	8.058 8.043	.014 .014	12.087 12.064	.031 .031	16.116 16.086	.055 .056
	45	1 3.080	4.014	.003	8.043 8.028	.014	12.004	.031	16.055	.056
24	00	17.439	4.006	.004	8.012	.014	12.018	.032	16.024	.057
	15 30	4.360 8.721	3.998 3.990	.004 .004	7.997 7.981	.014 .014	11.995 11.971	.032 .032	1 5.993 1 5.962	.057 .058
	45	13.081	3.982	.004	7.965	.015	11.948	.032	15.930	.058
25	00	17.442	3.974	.004	7.949	.015	11.923	.033	1 5.898	.059
	15 30	4.361 8.722	3.966 3.958	.004 .004	7.933 7.916	.015 .015	11.899 11.874	.033 .033	1 5.865 1 5.832	.059 .059
	4 5	13.083	3.950	.004	7.900	.01 5	11.850	.034	1 5.800	.060
26	00	17.444	3.942	.004	7.883	.01 5	11.825	.034	1 5.767	.060
	15 30	4.362 8.723	3.933 3.925	.004 .004	7.866 7.849	.015 .015	11.800	.034	15.733	.061 .061
	45	13.085	3.925	.004	7.833	.015	11.774 11.749	.034 .035	1 5.699 1 5.665	.061
27	00	17.446	3.908	.004	7.816	.01 5	11.723	.035	15.631	.062
	15 30	4.362 8.724	3.899 3.890	.004 .004	7.798 7.780	.016 .016	11.697 11.671	.035	15.596	.062
	45	13.087	3.881	.004	7.763	.016	11.644	.035 .036	15.561 15.526	.063 .063
28	00	17.449	3.873	.004	7.745	.016	11.618	.036	1 5.490	.064
	15 30	4.363 8.726	3.863 3.854	.004 .004	7.727 7.709	.016 .016	11.591 11.563	.036	15.454	.064
	45	13.088	3.845	.004	7.691	.016	11.536	.030 .036	15.382	.064 .065
29	00	17.451	3.8 3 6	.004	7.673	.016	11.509	.036	I 5.345	.065
	15 30	4.363 8.727	3.827 3.817	.004	7.654	.016	11.481	.037	1 5.308	.065
	45	13.091	3.808	.004 .004	7.635 7.616	.016 .016	11.453 11.425	.037 .037	1 5.270 1 5.233	.06ŏ .066
30	00	17.454	3.799	.004	7.598	.017	11.396	.037	15.195	.066
							1			

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 250000

[Derivation of table explained on pp. liii-lvi.]

of	ul dis- om ree		CO-ORDI	NATES (OF DEVE	LOPED I	ARALLE	L FOR-	
Latitude o parallel.	Meridional dis tances from even degree parallels.	15' lon	gitude.	30' lor	gitude.	45' loi	ngitude.	rº lon	gitude.
Lati	Mer tan eve par	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
30°00′ 15	4.364	3·799 3·789	.004 .004	7 .5 98 7.578	.017 .017	11.396 11.367	.037 .037	15.195 15.156	.066 .067
30	8.728	3.779	.004	7.559	.017	11.338	.038 .038	15.118	.067 .067
45	13.092	3.770	.004	7.540	.017	11.309 11.280	.038 .038	15.079	.067
31 00	17.457	3.760	.004	7.520	.017			15.040	.068
15 30	4.365 8.730	3.750 3.740	.004 .004	7.500	.017 .017	11.250 11.221	.038 .038	15.001	.068
4 5	13.095	3.730	.004	7.460	.017	11.191	.038	14.921	.068
32 00	17.460	3.720	.004	7.441	.017	11.161	.039	14.881	.069
15	4.366	3.710 3.700°	.004 .004	7.420	.017 .017	11.130 11.100	.039	14.840 14.799	.069 .069
30 45	8.731 13.097	3.690	.004	7.400 7.379	.017	11.069	.039 .039	14.758	.070
33 òo	17.462	3.679	.004	7.359	.017	11.038	.039	14.718	.070
15	4.366	3.669	.004	7.338	.018	11.007	.039	14.676	.070
30 45	8.733 13.099	3.658 3.648	.004 .004	7.317 7.296	810. 810.	10.975	.040 .040	14.633 14.591	.070 .07 I
34 00	17.465	3.637	.004	7.275	.018	10.912	.040	14.549	.071
15	4.367	3.626 3.616	.004 .004	7.253	810. 810.	10.879 10.847	.040 .040	14.506 14.463	.07 I .07 I
30 45	8.734 13.101	3.605	.004	7.23I 7.210	.018	10.047	.040	14.403	.072
35 00	17.468	3-594	.004	7.188	.018	10.782	.040	14.376	.072
15	4.368	3.583	.004	7.166	810. 810.	10.749 10.716	.041 .041	14.332 14.288	.072 .072
30 45	8.735 13.103	3.572 3.561	.004 .005	7.144 7.122	.010	10.683	.041	14.244	.073
36 00	17.471	3.550	.005	7.100	.018	10.650	.041	14.200	.073
15	4.368	3.539	.005	7.077	810. 810.	10.616 10.582	.041 .041	14.154 14.109	.073
30 45	8.736 13.105	3.527 3.516	.005 .005	7.054 7.032	.018	10.532	.041 .041	14.063	.073 .073
37 00	17.473	3.504	.005	7.009	810.	10.513	.041	14.018	.074
15	4.369	3•493 3.481	.005	6.986 6.963	810. 810.	10.479 10.444	.041 .042	13.972 13.925	.074 .074
- 30 45	8.738 13.108	3.401 3.470	.005 .005	6.939	.018	10.444	.042	13.879	.074
38 00	17.477	3 · 45 ⁸	.005	6.916	.019	10.374	.042	1 3.832	.074
15	4.370	3.446	.005	6.892 6.869	.019	10.339 10.303	.042 .042	13.785 13.737	.074 .075
30 45	8.740 13.110	3.434 3.422	.005 .005	6.845	.019 .019	10.303	.042	13.690	.075
39 00	17.480	3.411	.005	6.821	.019	10.232	.042	13.642	.07 5
15	4.371	3.398	.005	6.797	.019	10.195	.042	13.594	.075
30 45	8.741 13.112	3.386 3.374	.005 .005	6.773 6.748	.019 .019	10.1 59 10.1 23	.042 .042	13.545 13.497	.075 .075
40 00	17.483	3.362	.005	6.724	.019	10.086	.042	13.448	.075
har	N TABLES								

TABLE 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2353168π.

[Derivation of table explained on p. liii-lvi.]

of	ul dis- om ree		CO-ORDI	NATES (OF DEVE	LOPED P	ARALLE	L FOR-	
Latitude o parallel.	Meridional dis tances from even degree parallels.	15' lon;	gitude.	30' lon	gitude.	45' lon	gitude.	1º long	gitude.
Lati	Mer tau eve	x	У	x	у	x	У	x	У
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′ 15	4-371	3.362 3.350	.005 .005	6.724 6.699	.019 .019	10.086 10.049	.042 .042	13.448 13.399	.075 .075
30 45	4.371 8.743 13.114	3-337 3-325	.005 .005	6.675 6.650	.019 .019	10.012 9.975	.043 .043	13.349 13.300	.076 .076
41 00	17.486	3.312	.005	6.625	.019	9.937	.043	13.250	.076
15	4.372	3.300 3.287	.005	6.600	.019	9.900 9.862	.043	13.200	.076
30 45	8.744 13.117	3.207 3.275	.005 .005	6.575 6.549	.019 .019	9.802 9.824	.043 .043	13.149 13.098	.076 .076
42 00	17.489	3.262	.005	6.524	.019	9.786	.043	13.048	.076
15 30	4·373 8.746	3.249 3.236	.005 .005	6.498 6.472	.019 .019	9.747 9.709	.043 .043	12.996 12.945	.076 .076
45	13.119	3.223	.005	6.447	.019	9.670	.043	12.893	.076
43 00	17.492	3.210	.005	6.421	.019	9.631	.043	12.842	.076
15 30	4·374 8·747	3.197 3.184	.005 .005	6.394 6.368	.019 .019	9.592 9.552	.043 .043	12.789 12.736	.076 .076
45	13.121	3.170	.005	6.342	.019	9.513	.043	12.684	.076
44 00	17.495	3.158	.005	6.316	.019	9.473	.043	12.631	.077
15 30	.4•375 8.749	3.144 3.131	.005 .005	6.289 6.262	.019 .019	9.433 9.393	.043 .043	12.578 12.524	.077 .077
45	13.124	3.118	.005	6.235	.019	9.353	.043	12.471	.077
45 00	17.498	3.104	.005	6.209	.019	9.313	.043	12.417	·077
15 30	4.375 8.751	3.091 3.077	.005 .005	6.181 6.154	.019 .019	9.272 9.231	.043 .043	12.363 12.308	.077 .077
45	13.126	3.063	.005	6.127	.01 <u>9</u>	9.190	.043	12.254	.077
46 00	17.501	3.050	.005	6.100	.019	9.150	.043	12.200	.077
15 30	4.376 8.752	3.036 3.022	.005 .005	6.072 6.044	.019 .019	9.108 9.067	.043 .043	12.144 12.089	.077 .077
45	13.128	3.008	.005	6.017	.019	9.025	.043	12.033	·077
47 00	17.504	2.994	.005	5.989	.019	8.983	.043	11.978	.076
15 30	4·377 8.754	2.980 2.966	.005 .005	5.961 5.933	.019 .019	8.941 8.899	.043 .043	11.922 11.865	.076 .076
45	13.131	2.952	.005	5.904	.019	8.857	.043	11.809	.076
48 00	17.508	2.938	.005	5.876	.019	8.814	.043	11.752	.076
15 30	4.378 8.755	2.924 2.909	.005 .005	5.848 5.819	.019 .019	8.771 8.728	.043 .043	11.695 11.638	.076 .076
45	13.133	2.895	.005	5.790	.019	8.686	.043	11.581	.076
49 00	17.511	2.881	.005	5.762	.019	8.643	.043	11.524	.076
15 30	4.378 8.757	2.866 2.852	.005 .005	5·733 5·7°4	.019 .019	8.599 8.555	.043 .043	11.465	.076 .076
45	13.135	2.852 2.837	.005	5.675	.019	8.512	.043	11.407 11.349	.076
50 00	17.514	2.823	.005	5.646	.019	8.468	.042	11.291	.076

. . .

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000.

[Derivation of table explained on p. liii-lvi.]

Ja .	l dis- rom gree		CO-ORDI	NATES C	F DEVE	LOPED P	ARALLE	L FOR-	
Latitude c parallel.	Meridional dis- tances from even degree parallels.	15' lon	gitude.	30⁄ lon	gitude.	45' lon	gitude.	ro long	gitude.
Lati	Mer Paca	x	у	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
50°00′ 15	4.379	2.823 2.808	.005 .005	5.646 5.616	.019 .019	8.468 8.424	.042 .042	11.291 11.232	.076 .075
30 45	8.758	2.793 2.779	.005 .005	5-587 5-557	.019 .019	8.380 8.336	.042 .042	11.174 11.114	.075 .075
51 00	17.517	2.764	.005	5.528	.019	8.291	.042	11.055	.07 5
15	4.380	2.749	.005	5.498	.019	8.247	.042	10.996	.075
30 45	8.760 13.140	2.734 2.719	.005 .005	5.468 5.438	.019 .019	8.202 8.157	.042 .042	10.936 10.876	.075 .075
52 00	17.520	2.704	.005	5.408	.019	8.112	.042	10.816	.074
15 30	4.381 8.761	2.689 2.674	.005 .005	5.378	.019 .019	8.067 8.021	.042 .041	10.756 10.695	.074 .074
45	13.142	2.659	.005	5·347 5·317	.019	7.976	.041	10.634	.074
53 00	17.523	2.643	.005	5.287	.018	7.930	.041	10.573	. 074
15 30	4.381 8.763	2.628 2.613	.005 .005	5.256 5.225	810. 810.	7.884 7.838	.041 .041	10.512 10.451	.074 .073
45	13.144	2.597	.005	5.195	.018	7.792	.041	10.389	.073
54 00	17.526	2.582	.005	5.164	.018	7.745	.041	10.327	.073
15 30	4.382 8.764	2.566 2.551	.005 .005	5.133 5.102	810. 810.	7.699	.041 .041	10.266 10.203	.073 .073
45	13.147	2.535	.005	5.070	.018	7.606	.041	10.141	.072
55 00	17.529	2.520	.005	5.039	.018	7-559	.041	10.078	.072
15 30	4.383 8.766	2.504 2.488	.004	5.008 4.976	810. 810.	7.512 7.465	.040 .040	10.016 9.953	.072 .072
45	13.149	2.472	.004	4.945	.018	7.417	.040	9.890	.07 I
56 00	17.532	2.456	.004	4.913	.018	7.370	.040	9.826	.071
15 30	4.384 8.767	2.441 2.425	.004 .004	4.881 4.849	.018 .018	7.322 7.274	.040 .040	9.763 9.699	.071 .071
45	13.151	2.409	.004	4.817	.018	7.226	.040	9.635	.070
57 00	17.535	2.393	.004	4.785	.018	7.178	.039	9.571	.070
15 30	4.384	2.377 2.361	.004	4.753 4.721	.017	7.130	.039 .039	9.507 9.442	.070 .070
(45	13.153	2.344	.004	4.689	.017	7.033	.039	9.378	.069
58 00	17-537	2.328	.004	4.656	.017	6.985	.039	9.313	.069
15 30	4.385 8.770	2.312 2.296	.004	4.624	.017 .017	6.936 6.887	.039 .038	9.248 9.183	.069 .068
45	13.155	2.279	.004	4.559	.017	6.838	.038	9.117	.068
59 00	17.540	2.263	.004	4.526	.017	6.789	.038	9.052	.068
15 30	4.386 8.772	2.246	.004 .004	4·493 4·460	.017 .017	6.740 6.690	.038 .038	8.986 8.920	.068 .067
45	13.157	2.230	.004	4.427	.017	6.641	.038	8.854	.067
60 00	17.543	2.197	.004	4-394	.017	6.591	.037	8.788	.067
L		<u> </u>							

SMITHSONIAN TABLES.

TABLE 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000

Meridional dis-tances from even degree parallels. CO-ORDINATES OF DEVELOPED PARALLEL FOR -ъ Latitude of parallel. 15' longitude. 30/ longitude. 45' longitude. 1º longitude. x x х v v х y Y Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 8.788 60°00' 6.591 .067 2.197 .004 4.394 .017 .037 4.386 8.773 4.361 2.180 6.541 .066 .004 .017 .037 8.722 15 8.655 8.588 2.164 .004 4.327 .o1Ò 6.491 .037 .066 30 6.441 2.147 .004 .016 .066 13.159 4.294 .037 45 4.261 61 00 17.546 2.130 .004 .016 6.391 .037 8.521 .065 .065 4.387 8.774 .004 4.227 .016 8.454 8.387 2.114 6.340 .036 15 2.097 .004 4.194 .016 6.290 .036 .064 3Ō 13.161 4.160 8.320 .004 .016 6.240 .036 .064 45 6.189 8.252 .064 62 00 17.548 2.063 .004 4.126 .016 .036 4.388 8.776 .063 6.138 6.088 8.184 2.046 .004 4.092 .016 .036 15 .016 8.117 2.029 .004 4.058 .063 30 .035 13.163 .004 4.024 6.036 8.048 2.012 .016 .035 .063 45 63 00 1.995 .004 3.990 .015 5.985 .035 7.980 .062 17.551 4.388 8.777 1.978 3.956 5-934 5-883 .062 .004 .015 .035 7.912 15 .015 1.961 .004 7.844 .061 3.922 3.887 3Ō .034 13.165 1.944 .004 .015 5.831 .034 7-775 .061 45 3.853 64 00 1.926 .004 .015 5.780 .034 7.706 .060 17.554 .060 3.819 .015 4.389 8.778 1.909 .004 5.728 5.676 7.637 7.568 Iς .034 3.784 1.892 .034 .004 .015 .060 3Ō 13.167 1.875 .004 3.749 .015 5.624 .033 45 7.499 .059 65 00 17.556 1.857 .004 3.715 .015 5.572 .033 .059 7.430 1.840 3.680 7.360 4.390 8.779 .004 .015 5.520 5.468 .033 .059 .058 15 1.823 .033 3.645 30 .004 .014 7.290 3.610 13.169 .004 .058 45 .014 5.415 .032 7.220 66 00 1.788 17.559 .004 3-575 .014 5.363 .032 7.151 .057 15 4.390 8.780 1.770 .004 3.540 .014 5.310 .032 7.080 .057 1.753 .004 .014 30 .032 . 7.010 6.940 3.505 5.258 .056 13.171 1.735 .003 .056 45 3.470 .014 5.205 .031 17.561 67 00 1.717 .003 6.870 3.435 .014 5.152 .031 .055 4.391 8.782 1.700 15 .003 5.099 6.799 3.400 .014 .031 .055 1.682 .003 3ō 3.364 .014 5.046 6.728 .031 .054 1.664 **4**5 13.172 .003 6 6 5 8 3.329 .054 .013 4.993 .030 68 00 1.647 .013 17.563 .003 3.293 6.586 4.940 .030 .053 1.629 4.886 Iς 4.391 8.783 .003 3.258 .013 .030 6.515 .053 1.611 3.222 30 .003 .013 4.833 4.780 .ož9 6.444 .052 13.174 3.186 45 1.593 .003 .013 .029 6.373 .052 69 00 17.565 1.575 .003 3.151 .013 4.726 .029 6.301 .051 .013 15 4.392 8.784 .003 4.672 1.557 3.115 6.230 .029 .051 3Õ 1.540 .003 3.079 .013 4.618 .028 6.1 <u>5</u>8 6.086 .051 45 13.176 1.522 .003 3.043 .01Ž 4.564 .028 .050 17.568 70 00 1.504 .003 3.007 .028 .012 4.510 6.014 .049

[Derivation of table explained on pp. lili-lvi.]

TABLE 19.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 250000.

[Derivation of table explained on pp. liii-lvi.]

of	ul dis- om ree		CO-ORDI	NATES C)F DEVE	LOPED P	ARALLE	L FOR-	
Latitude o parallel.	Meridional dis tances from even degree parallels.	15' lon	gitude.	30/ lon	gitude.	45' lon	gitude.	r ^o long	itude.
Lati	Mer tan eve par	x	у	x	у	x	у	x	У
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
70°00′ 15	4.392 8.785	1.504 1.486	.003 .003	3.007 2.97 I	.012 .012	4.510 4.456	.028 .028	6.014 5.942	.049 .049
30 45	8.785 13.177	1.467 1.449	.003 .003	2.935 2.899	.012 .012	4.402 4.348	.027 .027	5.870 5.797	.048 .048
71 00	17.570	1.431	.003	2.862	.012	4.294	.027	5.725	.047
15	4·393 8.786	1.413	.003 .003	2.826	.012 .011	4.239 4.185	.026 .026	5.652 5.580	.047 .046
30 45	13.179	1.395 1.377	.003	2.790 2.753	.011	4.105	.026	5.507	.046
72 00	17.572	1.358	.003	2.717	.011	4.075	.025	5.434	.045
15 30	4·393 8. 7 87	1.340 1.322	.003 .003	2.681 2.644	110. 110.	4.021 3.966	.025 .025	5.361 5.288	.045 .044
45	13.180	1.304	.003	2.607	.011	3.911	.024	5.215	.044
73 00	17.573	1.285	.003	2.571	.011	3.856	.024	5.142	.043
15 30	4·394 8.788	1.267 1.249	.003 .003	2.534 2.497	.011 .010	3.801 3.746	.024 .024	5.068 4.994	.043 .042
¥5	13.181	1.230	.003	2.461	.010	3.691	.023	4.921	.041
74 00	17.575	1.212	.003	2.424	.010	3.636	.023	4.848	.041
15 30	4·394 8.788	1.193 1.175	.003 .002	2.387 2.350	010. 010.	3.580 3.525	.023 .022	4.774 4.700	.040 .040
45	13.183	1.156	.002	2.313	.010	3.470	.022	4.626	.039
75 00	17.577	1.138	.002	2.276	.010	3.414	.022	4.552	.038
15 30	4·395 8.789	1.119 1.101	.002 .002	2.239 2.202	.009 .009	3.358 3.303	.021 .021	4.478 4.404	.038 .037
45	13.184	1.082	.002	2.165	.009	3.247	.021	4.329	.037
76 00	17.579	1.064	.002	2.127	.009	3.191	.020	4.255	.036
15 30	4·395 8.790	1.045 1.026	.002 .002	2.090 2.053	.009 .009	3.135	.020	4.180 4.106	.036 .035
45	13.185	1.008	.002	2.016	.009	3.023	.019	4.031	.034
77 00	17.580	0.989	.002	1.978	.008 .008	2.967	.019	3.956 3.882	.034
15 30	4.395 8.791	0.970	.002	· 1.941 1.903 1.866	.008 .008 .008	2.911	.019 .018 .018	3.807 3.732	.033 .033 .032
45 78 oo	13.186 17.582	0.933	.002	1.828	.000	2.799 2.743	.018	3.657	.031
15	4.396	0.895	.002	1.791	.008	2.686	.017	3.582	.031
30 45	8.791 13.187	0.877 0.858	.002 .002	1.753 1.716	800. 800.	2.630 2.573	.017 .017	3.506 3.431	.030 .030
7 9 00	17.583	0.839	.002	1.678	.007	2.517	.016	3.356	.029
15	4.396	0.820 0.801	.002	1.640 1.603	.007 .007	2.461	.016 .016	3.281 3.205	.028 .028
30 45	8.792 13.188	0.801	.002	1.565	.007	2.404 2.348	.015	3.130	.028
80 00	17.584	0.764	.002	1.527	.007	2.291	.015	3.054	.026
[L	1	<u> </u>		<u>.</u>					

TABLE 20.

x

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liii-lvi.]

of	l dis- om ree	ABSCISSAS OF DEVELOPED PARALLEL.								
Latitude (parallel.	Meridional dis- tances from even degree parallels.	5 ['] longitude.	IO ['] longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.		RDINAT DEVEL PARAL	OPED
	Inches.					<u> </u>				
0° 00′	1710.7005.	Inches. 2.922	Inches. 5.844	Inches. 8.765	Inches. 11.687	Inches. 14.609	Inches. 17.531	Longitude interval.	o°	10
10 20	5.804 11.608	2.922	5.843 5.843	8.765 8.765	11.687 11.686	14.608 14.608	17.530	<u>ō</u> .ä		
30	17.412	2.922	5.843	8.765	11.686	14.608	17.530		Inches.	Inches.
40	23.216 29.020	2.922	5.843	8.764	11.686	14.608	17.529	5	0.000	0.000
50	29.020	2.921	5.843	8.764	11.686	14.607	17.528	10	.000	.000
1 00		2.921	5.843	8.764	11.685	14.606	17.528	15 20	.000	000. 100.
10 20	5.840 11.608	2.921	<u>5</u> .842 5.842	8.763 8.763	11.684 11.684	14.606 14.604	17.527	25	.000	.001
30	17.412	2.921 2.921	5.841	8.762	11.683	14.604	17.525 17.524	30	.000	100.
40	23.216	2.920	5.841	8.761	11.682	14.602	17.522			
50	29.020	2.920	5.840	8.761	11.681	14.601	17.521			¦
2 00		2.920	5.840	8.760	11.680	14.6oc	17.520		2 ⁰	3°
ю	5.804	2.920	5.839	8.759	11.678	14.598	17.518		<u> </u>	
20	11.608	2.919	5.839 5.838	8.758	11.677	14.596	17.516	5	0.000	0.000
30 40	17.412	2.919 2.918	5.837	8.757 8.756	11.676 11.674	14.594 14.592	17.513 17.511	10	.000	.000
50	29.020	2.918	5.836	8.755	11.673	14.591	17.509	15 20	100. 100.	.001 .002
			- 9-6	0				25	.002	.003
300	5.804	2.918 2.917	5.836 5.835	8.753 8.752	11.671 11.669	14.589 14.586	17.507 17.504	30	.003	.004
20	11.608	2.917	5.834	8.7 50	11.667	14.584	17.504			
30	17.413	2.916	5.832	8.749	11.665	14.581	17.497			
40 50	23.217 29.021	2.916 2.915	5.831 5.830	8.747 8.746	11.663 11.661	14.578 14.576	17.494 17.491		4°	5°
4 00		2.915	5.829	8.744	11.659	14.574	17.488	5	0.000	0.000
10	5.804	2.914	5.828	8.742	11.656	14.570	17.484	10	.001	.00I
20 30	11.609 17.413	2.913	5.827 5.825	8.740 8.738	11.654 11.651	14.567	17.480	15	.001 .002	.002
40	23.217	2.913	5.824	8.736	11.648	14.564 14.560 -	17.476 17.473	20 25	.002	.003 .005
50	29.022	2.911	5.823	8.734	11.646	14.557	17.468	30	.005	.007
5 00		2.911	5.822 5.820	8.732	11.643	14.554	17.465			
10 20	5.804 11.609	2.910 2.909	5.820 5.818	8.730 8.727	11.640 11.636	14.550	17.459		6°	7°
30	17.414	2.908	5.817	8.725	11.633	14.546 14.542	17.455 17.450			
40	23.218	2.908	5.815	8.722	11.630	14.538	17.445	5	0.000	0.000
50	29.022	2.907	5.813	8.720	11.627	14.534	17.440	10	100.	100.000
6 00	• • • • • • • • •	2.906	5.812	8.718	11.624	14.530	17.435	15	.002	.002
10	5.805	2.905	5.810	8.715	11.620	14.524	17.429	20 25	.004 .006	.004
20 30	11.609 17.414	2.904 2.903	5.808 5.806	8.712 8.709	11.616 11.612	14.520	17.424	25 30	.000	.000
40	23.219	2.903	5.800	8.706	11.602	14.515	17.418 17.413	2		
50	29.024	2.901	5.802	8.703	11.604	14.506	17.407			
7 00		2.900	5.800	8.701	11.601	14.501	17.401		8°	
10	5.805	2.899	5.798	8.697	11.596	14.496	17.395			
20	11.610	2.898 2.897	5.796	8.694 8.690	11.592	14.490	17.387	5	0.000	
30 40	17.415	2.896	5·794 5.791	8.687	11.587 11.583	14.484 14.478	17.381 17.374	IÕ	.001	
50	29.025	2.895	5.789	8.684	11.578	14.473	17.368	15 20	.003 .005	
8 00				0 60-				25	.007	
000	•••••	2.894	5.7 ⁸ 7	8.680	11.574	14.468	17.361	30	010	
·	IAN TABL									I

TABLE 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liu-lvi.]

of	l dis- ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EĽ.			
Latitude o parallel.	Meridional di tances from even degree parallels.	5 [°] longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	נן	RDINAT DEVEL(PARALI	OPED
8°00' 10	Inches. 5.805	Inches. 2.894 2.892	Inches. 5.787 5.784	Inches. 8.680 8.677	Inches. 11.574 11.569	<i>Inches.</i> 14.468 14.461	Inches. 17.361 17.353	Longitude interval.	80	9°
20 30 40 50	11.610 17.416 23.221 29.026	2.891 2.890 2.888 2.887	5.782 5.779 5.777 5.775	8.673 8.669 8.666 8.662	11.564 11.559 11.554 11.549	14.455 14.448 14.442 14.436	17.346 17.338 17.331 17.324	5 10 15	Inches. 0.000 .001 .003	Inches 0.000 .001
9 00 10 20 30 40	5.806 11.611 17.417 23.222 29.028	2.886 2.885 2.883 2.882 2.881 2.881 2.879	5-772 5-769 5-767 5-764 5-761 5-758	8.658 8.654 8.650 8.646 8.642 8.637	11.544 11.539 11.528 11.528 11.522 11.516	14.430 14.424 14.416 14.402 14.402	17.317 17.308 17.300 17.291 17.283 17.275	20 25 30	.003 .005 .007 .010	.003 .005 .008 .012
50 10 00	•••••	2.878	5.755	8.633	11.511	14.396 14.388	17.266		100	IIo
10 20 30 40 50	5.806 11.612 17.417 23.223 29.029	2.876 2.875 2.873 2.872 2.872 2.870	5.752 5.749 5.746 5.743 5.743	8.628 8.624 8.619 8.614 8.610	11.498 11.498 11.492 11.486 11.480	14.380 14.373 14.366 14.358 14.350	17.257 17.248 17.239 17.229 17.220	5 10 15 20	0.000 .001 .003 .006	0.000 .002 .004 .006
11 00 10 20 30	5.806 11.612 17.419	2.869 2.867 2.865 2.864	5.737 5.734 5.730 5.727	8.606 8.601 8.596 8.590	11.474 11.468 11.461 11.454	14.342 14.334 14.326 14.318	17.211 17.201 17.191 17.181	25 30	.009 .013	.010 .014
40 50	23.225 29.031	2.862 2.860	5.724 5.720	8.585 8.580	11.447 11.440	14.309 14.300	17.171 17.161		I 2 ⁰	13°
12 00 10 20 30 40 50	5.807 11.613 17.420 23.226 29.033	2.858 2.857 2.855 2.853 2.851 2.849	5.717 5.713 5.709 5.706 5.702 5.698	8.575 8.570 8.564 8.559 8.553 8.548	11.434 11.426 11.419 11.412 11.404 11.397	14.292 14.282 14.274 14.264 14.266 14.246	17.150 17.139 17.128 17.117 17.107 17.095	5 10 15 20 25 30	0.000 .002 .004 .007 .011 .016	0.000 .002 .004 .007 .012 .017
1300 10 20	5.807 11.614	2.847 2.846 2.844	5.695 5.691 5.687	8.542 8.536 8.530	11.390 11.382 11.374	14.237 14.228 14.218	17.084 17.073 17.061		14°	15°
30 40 50	17.421 23.228 29.035	2.842 2.840 2.838	5.683 5.679 5.675	8.524 8.519 8.513	11.366 11.358 11.350	14.208 14.198 14.188	17.049 17.038 17.026	5 10	0.000	0.00I .002
14 00 10 20 30 40	5.808 11.615 17.422 23.230	2.836 2.834 2.831 2.829 2.827	5.671 5.667 5.663 5.658 5.654	8.507 8.500 8.494 8.488 8.481	11.342 11.334 11.326 11.317 11.308	14.178 14.168 14.157 14.146 14.136 14.125	17.014 17.001 16.988 16.975 16.963 16.950	15 20 25 30	.004 .008 .012 .018	.005 .009 .013 .019
50 15 00	29.038	2.825 2.823	5.650 5.646	8.475 8.469	11.300 11.292	14.114	16.937		16°	
10 20 30 40 50	5.808 11.616 17.424 23.2 3 2 29.040	2.821 2.818 2.816 2.814 2.814 2.812	5.641 5.637 5.632 5.628 5.623	8.462 8.455 8.448 8.441 8.435	11.282 11.274 11.264 11.255 11.246	14.103 14.092 14.080 14.069 14.058	16.924 16.910 16.897 16.883 16.870	5 10 15 20	0.001 .002 .005 .009	
16 00		2.809	5.619	8.428	11.237	14.046	16.856	25 30	.014 .020	

TABLE 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liü-lvi.]

	side as	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		DINAT	TE OF
Latitude of parallel.	Meridional di tances from even degree parallels.	5´ longitude.	10' loogitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DEVELO PARALI	PED
16°00' 10	Inches. 5.809	<i>Inches.</i> 2.809 2.807	Inches. 5.619 5.614	Inches. 8.428 8.421	Inches. 11.237 11.228	Inches. 14.046 14.034	Inches. 16.856 16.841	Longitude interval.	16°	17°
20 30 40 50	11.617 17.426 23.234 29.043	2.804 2.802 2.800 2.797	5.609 5.604 5.599 5.595	8.414 8.406 8.399 8.392	11.218 11.208 11.199 11.189	14.022 14.010 13.998 13.986	16.827 16.813 16.798 16.784	5 10 15	Inches. 0.001 .002 .005	Inches. 0.001 .002 .005
17 00 10 20 30	5.809 11.618 17.427 23.236	2.795 2.792 2.790 2.787 2.785	5.590 5.585 5.580 5.575 5.570	8.385 8.377 8.369 8.362 8.354	11.180 11.170 11.159 11.149 11.139	13.974 13.962 13.949 13.936 13.924	16.769 16.754 16.739 16.724 16.709	20 25 30	.009 .014 .020	.010 .015 .021
40 50	29.046	2.782	5.564	8.347	11.129	13.911	16.693 16.678		180	190
18 00 10 20 30 40 50	5.810 11.619 17.429 23.239 29.049	2.780 2.777 2.774 2.772 2.769 2.766	5.559 5.554 5.549 5.543 5.538 5.538	8.339 8.331 8.323 8.315 8.307 8.299	11.109 11.097 11.087 11.076 11.065	13.895 13.872 13.859 13.845 13.832	16.662 16.646 16.630 16.614 16.598	5 10 15 20	0.001 .002 .006 .010	0.001 .003 .006 .010 .016
19 00 10 20	5.810 11.621	2.764 2.761 2.758	5.527 5.522 5.516	8.291 8.282 8.274 8.266	11.054 11.043 11.032 11.021	13.818 13.804 13.790	16.582 16.565 16.548 16.531	25 30	.016 .022	.024
30 40 50	17.431 23.242 29.052	2.755 2.752 2.750	5.510 5.505 5.499	8.200 8.257 8.249	11.009	13.776 13.762 13.748	16.514 16.497		200	210
20 00 10 20 30 40 50	5.811 11.622 17.433 23.244 29.055	2.747 2.743 2.741 2.738 2.735 2.735 2.732	5.493 5.487 5.482 5.476 5.470 5.464	8.240 8.231 8.222 8.213 8.204 8.196	10.987 10.975 10.963 10.951 10.939 10.928	13.734 13.719 13.704 13.689 13.674 13.660	16.480 16.462 16.445 16.427 16.409 16.391	5 10 15 20 25 30	0.001 .003 .006 .011 .017 .025	0.00I .003 .006 .011 .018 .026
21 00 10 20	5.812 11.623	2.729 2.726 2.723	5.458 5.452 5.445	8.187 8.177 8.168	10.916 10.903 10.891	13.645 13.629 13.614	16.373 16.355 16.336		22 ⁰	23°
30 40 50	17.435 23.247 29.058	2.720 2.717 2.714	5-439 5-433 5-427	8.159 8.150 8.141	10.878 10.866 10.854	13.598 13.583 13.568	16.318 16.300 16.281	5	0.001	0.001
22 00 10 20 30 40 50	5.812 11.625 17.437 23.250 29.062	2.710 2.707 2.704 2.701 2.697 2.694	5.421 5.414 5.408 5.401 5.395 5.388	8.131 8.122 8.112 8.102 8.092 8.083	10.842 10.829 10.816 10.802 10.790 10.777	I 3.552 I 3.536 I 3.520 I 3.503 I 3.487 I 3.47I	16.262 16.243 16.223 16.204 16.184 16.165	15 20 25 30	.007 .012 .018 .027	.007 .012 .019 .028
23 00		2.691	5.382	8.073	10.764	13.455	16.145		24°	
10 20 30 40 50	5.813 11.626 17.439 23.252 29.066	2.688 2.684 2.681 2.677 2.674	5.37 5 5.368 5.362 5.355 5.348	8.063 8.053 8.042 8.032 8.022	10.7 50 10.7 37 10.723 10.710 10.696	13.438 13.421 13.404 13.387 13.371	16.125 16.105 16.085 16.064 16.045	5 10 15 20	0.001 .003 .007 .013	
24 00		2.67 1	5.341	8.012	10.683	13.354	16.024	30	.020 .028	

TABLE 20.

.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. lili-lvi.]

	:: :: :: ::	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5 ['] longitude.	10' loogitude.	I 5' longitude.	20' longitude.	25' longitude.	30' lougitude.	I	DINAT DEVELO PARALL	PED
24 ⁰ 00' 10	Inches 5.814	Inches. 2.671 2.667	Inches. 5.341 5.334	Inches. 8.012 8.002	Inches. 10.683 10.669	Inches. 13.354 13.336	Inches. 16.024 16.003	Longitude interval.	24 ⁰	25°
20 30 40 50	11.628 17.442 23.256 29.069	2.664 2.660 2.657 2.653	5.327 5.320 5.313 5.306	7.991 7.981 7.970 7.960	10.655 10.641 10.627 10.613	13.319 13.301 13.284 13.266	15.982 15.961 15.940 15.919	5	Inches. 0.001 .003	Inches. 0.001 .003
25 00 10 20 30 40 50	5.815 11.629 17.444 23.259 29.074	2.650 2.646 2.642 2.639 2.635 2.631	5.299 5.292 5.285 5.278 5.270 5.263	7.949 7.938 7.927 7.916 7.905 7.894	10.599 10.584 10.570 10.5 55 10.540 10.526	13.249 13.231 13.212 13.194 13.176 13.157	15.898 15.877 15.854 15.833 15.811 15.788	15 20 25 30	.007 .013 .020 .028	.007 .013 .020 .029
26 00 10	5.816	2.628 2.624	5.256 5.248	7.883 7.872	10.511 10.496	13.139 13.120	1 5.767 1 5.744		26 ⁰	27 ⁰
20 30 40 50	11.631 17.446 23.262 29.077	2.620 2.616 2.613 2.609	5.240 5.233 5.225 5.218	7.861 7.849 7.838 7.827	10.490 10.481 10.466 10.451 10.436	13.120 13.101 13.082 13.063 13.045	15.721 15.698 15.676 15.654	5 10 15 20	0.001 .003 .008 .013	0.001 .003 .008 .014
27 00 10 20 30	5.816 11.633 17.449	2.605 2.601 2.597 2.593	5.210 5.203 5.195 5.187	7.816 7.804 7.792 7.780	10.421 10.405 10.390 10.374	13.026 13.006 12.987 12.967	15.631 15.608 15.584 15.560	25 30	.021 .030	.022 .031
40 50	23.265 29.082	2.589 2.586	5.179 5.171	7.768 7.757	10.358 10.342	12.947 12.928	15.537 15.514		28°	29°
28 00 10 20 30 40 50	5.817 11.634 17.451 23.268 29.086	2.582 2.578 2.574 2.570 2.570 2.566 2.562	5.163 5.155 5.147 5.139 5.131 5.123	7.745 7.733 7.721 7.709 7.697 7.685	10.327 10.311 10.294 10.278 10.262 10.246	12.909 12.889 12.868 12.848 12.828 12.808	15.490 15.466 15.442 15.418 15.394 15.369	5 10 15 20 25 30	0.001 .004 .008 .014 .022 .032	0.001 .004 .008 .014 .023 .032
29 00- 10 20	5.818 11.636	2.558 2.553 2.549	5.115 5.107 5.098	7.673 7.660 7.648	10.230 10.213 10.197	12.788 12.767 12.746	15.345 15.320 15.295		30°	310
30 40 50	17.454 23.272 29.090	2.545 2.541 2.537	5.090 5.082 5.073	7.635 7.622 7.610	10.180 10.163 10.146	12.725 12.704 12.683	1 5.270 1 5.245 1 5.220	5 10	0.001 .004	0.001 .004
30 00 10 20 30 40	5.819 11.638 17.457 23.276 29.094	2.533 2.528 2.524 2.520 2.515 2.511	5.065 5.056 5.048 5.039 5.031 5.022	7.598 7.585 7.572 7.559 7.546 7.533	10.130 10.113 10.096 10.078 10.061 10.044	12.662 12.641 12.620 12.598 12.577 12.555	15.195 15.169 15.143 15.118 15.092 15.066	15 20 25 30	.008 .015 .023 .033	.008 .015 .023 .034
50 31 00		2.507	5.014	7.520	10.027	12.534	1 5.040		32 ⁰	
10 20 30 40 50	5.820 11.640 17.460 23.280 29.100	2.502 2.498 2.493 2.489 2.485	5.005 4.996 4.987 4.978 4.978 4.969	7.507 7.494 7.480 7.467 7.454	10.009 9.992 9.974 9.956 9.938	12.512 12.490 12.467 12.445 12.423	15.014 14.987 14.960 14.934 14.908	5 10 15 20	0.001 .004 .009 .015	
32 00		2.480	4.960	7.441	9.921	12.401	14.881	25 30	.024 .034	

TABLE 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000

[Derivation of table explained on pp. liii-lvi.]

	l dis- un ee	AB	SCISSAS	OF DEV	ELOPED	PARALLI	EL.			
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5 longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	r	DINAT DEVELO PARALL	PED
32°00' 10	Inches. 5.821	Inches. 2.480 2.476	Inches. 4.960 4.951	Inches. 7.441 7.427	Inches. 9.921 9.903	Inches. 12.401 12.379	<i>Inches.</i> 14.881 14.854	Longitude interval.	32°	33°
20 30 40 50	11.642 17.462 23.283 29.104	2.471 2.467 2.462 2.458	4.942 4.933 4.924 4.915	7.413 7.400 7.386 7.373	9.884 9.866 9.848 9.830	12.355 12.333 12.310 12.288	14.827 14.800 14.772 14.745	5' 10	Inches. 0.001 .004	Inches. 0.001 .004
33 00 10 20 30 40 50	5.822 11.643 17.465 23.287 29.109	2.453 2.448 2.444 2.439 2.434 2.429	4.906 4.896 4.887 4.878 4.868 4.859	7·359 7·345 7·331 7·316 7·302 7·288	9.812 9.793 9.774 9.755 9.736 9.718	12.265 12.241 12.218 12.194 12.171 12.147	14.717 14.689 14.661 14.633 14.605 14.576	15 20 25 30	.009 .015 .024 .034	.009 .016 .024 .035
34 00 10	5.823	2.429 2.425 2.420	4.850 4.840	7.200 7.274 7.260	9.699 9.680	12.124 12.124 12.100	14.570 14.549 14.520		34°	35°
20 30 40 50	11.645 17.468 23.291 29.113	2.415 2.410 2.406 2.401	4.830 4.821 4.811 4.802	7.246 7.231 7.217 7 .203	9.661 9.642 9.622 9.604	12.076 12.052 12.028 12.004	14.491 14.462 14.434 14.405	5 10 15 20	0.001 .004 .009 .016	0.001 .004 .009 .016
35 00 10 20 30	5.824 11.647 17.471	2.396 2.391 2.386 2.381	4.792 4.782 4.773 4.763	7.188 7.174 7.159 7.144	9.584 9.565 9.545 9.526	11.980 11.956 11.932 11.907	14.376 14.347 14.318 14.288	25 30	.025 .036	.025 .036
40 50	23.294 29.118	2.377 2.372	4·753 4·743	7.130 7.115	9.506 9.486	11.883 11.858	14.259 14.230		36°	
36 00 10 20 30 40 50	5.824 11.649 17.473 23.297 29.122	2.367 2.362 2.357 2.351 2.346 2.341	4.733 4.723 4.713 4.703 4.693 4.683	7.099 7.085 7.070 7.055 7.039 7.024	9.466 9.446 9.426 9.406 9.386 9.366	11.833 11.808 11.783 11.757 11.732 11.707	14.200 14.170 14.139 14.109 14.078 14.048	5 10 15 20 25 30	0.001 .004 .009 .016 .025 .036	0.001 .004 .009 .016 .026 .037
37 00 10 20	5.826 11.651	2.336 2.331 2.326 2.321	4.673 4.662 4.652 4.642	7.009 6.994 6.978	9·345 9·325 9·304	11.682 11.656 11.630	14.018 13.987 13.956		38°	 39°
30 40 50	17.477 23.302 29.128	2.316 2.311 2.311	4.631 4.621	6.963 6.947 6.932	9.284 9.263 9.242	11.605 11.579 11.553	1 3.925 1 3.894 1 3.864	5 10	0.001 .004	0.001 .004
38 00 10 20 30 40 50	5.827 11.653 17.480 23.306 29.133	2.305 2.300 2.295 2.290 2.284 2.279	4.611 4.600 4.590 4.579 4.568 4.558	6.916 6.900 6.884 6.869 6.853 6.837	9.222 9.200 9.179 9.158 9.137 9.116	11.527 11.501 11.474 11.448 11.421 11.395	13.832 13.801 13.769 13.737 13.705 13.673	15 20 25 30	.009 .017 .026 .037	.009 .017 .026 .037
39 00 10	5.828	2.274 2.268	4.548 4.537	6.821 6.805	9.095	11.369	13.642		40°	
20 30 40 50	11.655 17.483 23.310 29.138	2.263 2.258 2.252 2.247	4.526 4.515 4.504 4.493	6.789 6.773 6.756 6.740	9.073 9.052 9.030 9.008 8.987	11.342 11.315 11.288 11.261 11.234	13.610 13.577 13.545 13.513 13.480	5 10 15 20	0.001 .004 .009 .017	
40 00	•••••••	2.241	4.483	6.724	8.965	11.207	1 3.448	25 30	.026 .038	

SMITHSONIAN TABLES.

.

TABLE 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liii-lvi.]

of	l dis- on ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude o parallel.	Meridional dis- tances from even degree parallels.	5' longitude.	10 ⁷ longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAT DEVELC PARALI	PED
40°00' 10 20	Inches. 5.829 11.657	Inches. 2.241 2.236 2.230	Inches. 4.483 4.472 4.461	Inches. 6.724 6.707 6.691	Inches. 8.965 8.943 8.921	Inches. 11.207 11.179 11.152	Inches. 13.448 13.415 13.382	Longitude interval.	40°	41°
30 40 5 0	17.486 23.314 29.143	2.225 2.219 2.214	4.450 4.439 4.428	6.674 6.658 6.641	8.899 8.877 8.855	11.132 11.124 11.097 11.069	13.349 13.316 13.283	5 10 15	Inches. 0.001 .004 .009	Inches. 0.001 .004 .009
41 00 10 20 30 40 50	5.830 11.659 17.489 23.319 2 9. 149	2.208 2.203 2.197 2.192 2.186 2.180	4-417 4-406 4-394 4-383 4-372 4-360	6.625 6.608 6.591 6.575 6.558 6.541	8.834 8.811 8.788 8.766 8.744 8.721	11.042 11.014 10.985 10.958 10.929 10.901	13.250 13.217 13.183 13.149 13.115 13.081	20 25 30	.017 .026 .038	.017 .026 .038
42 00 10	5.831	2.175	4.349 4.338	6.524 6.507	8.698 8.676	10.873 10.844	13.048		42 ⁰	43°
20 30 40 50	5.031 11.661 17.492 23.323 29.154	2.163 2.157 2.152 2.146	4.330 4.326 4.315 4.303 4.292	6.490 6.472 6.455 6.438	8.653 8.630 8.607 8.584	10.344 10.816 10.787 10.759 10.730	13.013 12.979 12.945 12.910 12.876	5 10 15 20	0.001 .004 .010 .017 .026	0.001 .004 .010 .017 .027
43 00 10 20 30	5.832 11.663 17.495	2.140 2.135 2.129 2.123	4.281 4.269 4.257 4.246	6.421 6.403 6.386 6.368	8.561 8.538 8.514 8.491	10.702 10.672 10.643 10.614	12.842 12.807 12.772 12.737	25 30	.038	.038
40 50	23.327 29.1 59	2.117 2.111	4.234 4.222	6.351 6.333	8.468 8.444	10.585 10.556	12.701 12.667		44°	45°
44 00 10 20 30 40 50	5.833 11.666 17.498 23.331 29.164	2.105 2.099 2.093 2.087 2.081 2.076	4.210 4.199 4.187 4.175 4.163 4.151	6.316 6.298 6.280 6.262 6.244 6.227	8.421 8.397 8.373 8.350 8.326 8.302	10.526 10.496 10.467 10.437 10.407 10.378	12.631 12.596 12.560 12.524 12.489 12.453	5 10 15 20 25 30	0.001 .004 .010 .017 .027 .038	0.001 .004 .010 .017 .027 .038
45 00 10 20 30	5.834 11.668 17.501	2.070 2.064 2.057 2.051	4.139 4.127 4.115 4.103	6.209 6.191 6.172 6.154	8.278 8.254 8.230 8.206	10.348 10.317 10.288 10.257	12.417 12.381 12.345 12.308		46°	47°
40 50	23.335 29.169	2.031 2.045 2.039	4.091 4.079	6.136 6.118	8.181 8.1 57	10.226 10.197	12.272 12.236	5 10	0.001 .004	0.001 .004
46 00 10 20 30 40 50	5.835 11.670 17.504 23.339 29.174	2.033 2.027 2.021 2.015 2.009 2.003	4.067 4.054 4.042 4.030 4.017 4.005	6.100 6.081 6.063 6.044 6.026 6.008	8.133 8.108 8.084 8.059 8.034 8.010	10.166 10.136 10.104 10.074 10.043 10.013	12.199 12.163 12.125 12.089 12.052 12.015	15 20 25 30	.010 .017 .027 .038	.010 .017 .027 .038
47 00 10	5.836	1.996 1.990	3.992 3.980	5.989 5.970	7.985 7.960	9.9 81 9.951	11.978 11.941		48°	
20 30 40 50	11.672 17.508 23.344 29.180	1.998 1.984 1.978 1.971 1.965	3.968 3.955 3.943 3.930	5.951 5.933 5.914 5.895	7.935 7.910 7.885 7.860	9.919 9.888 9.857 9.826	11.903 11.866 11.828 11.791	5 10 15 20	0.001 .004 .010 .017 .026	
48 00		1.959	3.917	5.876	7.835	9.794	11.752	25 30	.020 .038	

SMITHSONIAN TABLES.

,

TABLE 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liii-lvi.]

	e n dis	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		RDINAT	
Latitude of parallel.	Meridional dis tances from even degree parallels.	5 [°] longitude.	10' longitude.	I 5' loogitude.	20' loogitude.	25' longitude.	30' longitude.		DEVELO PARALI	OPED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	48°	49°
48°00′ 10 20	5.837 11.674	1.959 .1.952 1.946	3.917 3.905 3.892	5.876 5.857 5.838	7.835 7.810 7.784	9.794 9.762 9.730	11.752 11.714 11.677	, <u>,</u> <u>,</u>		
30 40 50	17.511 23.348 29.185	1.940 1.933 1.927	3.879 3.867 3.854	5.819 5.800 5.781	7·759 7·733 7·708	9.699 9.667 9.635	11.638 11.600 11.562	5 10	Inches. 0.001 .004	Inches. 0.001 .004
49 00 10 20	5.838 11.676	1.921 1.914 1.908	3.841 3.828 3.815	5.762 5.743 5.723	7.682 7.657 7.631	9.603 9.571 9.539	11.523 11.485 11.446	15 20 25 30	.010 .017 .026 .038	.010 .017 .026 .038
30 40 50	17.514 23.352 29.190	1.901 1.895 1.888	3.803 3.790 3.777	5.704 5.684 5.665	7.605 7.579 7.553	9.507 9.474 9.442	11.408 11.369 11.330			51°
50 00 IQ	5.839	1.882 1.875	3.764 3.750	5.646 5.626	7.527 7.501	9.409 9.376	11.291 11.251		50°	
20 30 40 50	11.678 17.517 23.356 29.194	1.869 1.862 1.856 1.849	3.737 3.724 3.711 3.698	5.606 5.587 5.567 5.547	7·475 7·449 7·422 7·396	9.344 9.311 9.278 9.245	11.212 11.173 11.134 11.094	5 10 15 20	0.001 .004 .009 .017	0.001 .004 .009 017
51 00 10 20	5.840 11.680	1,842 1,836 1,829	3.685 3.672 3.658	5.528 5.507 5.488	7.370 7.343 7.317	9.212 9.179 9.146	11.055 11.015 10.975 10.936	25 30	.026 .038	.026 .037
30 40 50	17.520 23.360 29.200	1.823 1.816 1.809	3.645 3.632 3.618	5.468 5.448 5.4 <i>2</i> 8	7.290 7.264 7.237	9.113 9.080 9.046	10.895 10.855		52 ⁰	53°
52 00 10 20	5.841 11.682	1.803 1.796 1.789	3.605 3.592 3.578	5.408 5.388 5.367	7.210 7.184 7.156	9.013 8.980 8.946	10.816 10.775 10.734	5 10 15	0.001 .004 .009	0.001 .004 .009
30 40 50	17.523 23.364 29.204	1.782 1.776 1.7 6 9	3.565 3.551 3.538	5·347 5·327 5·307	7.130 7.103 7.076	8.912 8.878 8.844	10.694 10.654 10.613	20 25 30	.017 .026 .037	.016 .026 .037
53 00 10 20	5.842 11.684	1.762 1.755 1.748	3.524 3.511 3.407	5.287 5.266 5.246	7.049 7.022 6.994	8.811 8.777 8.742	10.573 10.532 10.491		54°	 55°
30 40 50	17.526 23.368 29.210	1.742 1.735 1.728	3.497 3.483 3.470 3.456	5.225 5.205 5.184	6.967 6.940 6.912	8.708 8.674 8.640	10.450 10.409 10.368	5 10	0.001 .004	0.00 I .004
54 00 10 20 30 40	5.843 11.686 17.529 23.372	1.721 1.714 1.707 1.700 1.694	3.442 3.429 3.415 3.401 3.3 ⁸ 7	5.164 5.143 5.122 5.101 5.080	6.885 6.857 6.830 6.802 6.774	8.606 8.572 8.537 8.502 8.468	10.327 10.286 10.244 10.202 10.161	15 20 25 30	.009 .016 .025 .036	.009 .016 .025 .036
50 55 00	29.214	1.687 1.680	3·373 3·359	5.060 5.039	6.746 6.719	8.433 8.398	10.120 10.078		56°	
10 20 30 40 50	5.844 11.688 17.532 23.376 29.220	1.673 1.666 1.659 1.652 1.645	3.345 3.331 3.317 3.303 3.289	5.018 4.997 4.976 4.955	6.691 6.663 6.635 6.607	8.364 8.328 8.294 8.258 8.224	10.036 9.994 9.952 9.910 9.868	5 10 15 20	0.001 .004 .009 .016	
56 00		1.638	3.209 3.275	4.934 4.913	6.579 6.551	8.188	9.808 9.826	25 30	.025 .036	

TABLE 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 125000.

[Derivation of table explained on pp. liii-lvi.]

of	l dis- m ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude o parallel.	Meridional dis tances from even degree parallels.	5 ['] loogitude.	IO longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAT DEVELO PARALI	PED
56°00′ 10 20	Inches. 5.845 11.690	Inches. 1.638 1.631 1.624	Inches. 3.275 3.261 3.247	Inches. 4.913 4.892 4.870	Inches. 6.551 6.522 6.494	Inches. 8.188 8.153 8.118	<i>Inches.</i> 9.826 9.784 9.741	Longitude interval.	56°	57°
30 40 50	17.535 23.380 29.224	1.616 1.609 1.602	3.233 3.219 3.204	4.849 4.828 4.807	6.466 6.437 6.409	8.082 8.046 8.011	9.698 9.656 9.613	5 10 15	Inches. 0.001 .004 .009	Inches. 0.001 .004 .009
57 00 10 20 30 40 50	5.846 11.692 17.537 23.383 29.229	1.595 1.588 1.581 1.574 1.566 1.559	3.190 3.176 3.162 3.147 3.133 3.119	4.785 4.764 4.742 4.721 4.699 4.678	6.380 6.352 6.323 6.294 6.266 6.237	7.976 7.940 7.868 7.832 7.796	9.571 9.527 9.485 9.442 9.398 9.356	20 25 30	.016 .025 .036	.016 .024 .035
58 00	5.847	1.552	3.104	4.656	6.208	7.760	9.313		58°	59°
10 20 30 40 50	5.847 11.694 17.540 23.387 29.234	1.545 1.538 1.530 1.523 1.516	3.090 3.075 3.061 3.046 3.032	4.634 4.613 4.591 4.569 4.547	6.179 6.150 6.122 6.092 6.063	7.724 7.688 7.652 7.616 7.579	9.269 9.226 9.182 9.139 9.095	5 10 15 20	0.001 .004 .009 .015	0.001 .004 .008 .015
59 00 10 20 30	5.848 11.695 17.543	1.509 1:501 1.494 1.487	3.017 3.003 2.988 2.973	4.526 4.504 4.482 4.460	6.034 6.005 5.976 5.946	7.543 7.506 7.470 7.433	9.052 9.008 8.963 8.920	25 30	.024 .034	.024 .034
40 50	23.391 29.238	1.479 1.472	2.959 2.944	4.438 4.416	5.917 5.888	7.396 7.360	8.876 8.831		60°	61°
60 00 10 20 30 40 50	5.849 11.697 17.546 23.394 29.243	1.465 1.457 1.450 1.442 1.435 1.428	2.929 2.914 2.900 2.885 2.870 2.855	4-394 - 4-372 4-349 4-327 4-305 4-283	5.858 5.829 5.799 5.770 5.740 5.710	7.323 7.286 7.249 7.212 7.175 7.138	8.788 8.743 8.699 8.654 8.610 8.566	5 10 15 20 25 30	0.001 .004 .008 .015 .023 .033	0.001 .004 .008 .014 .023 .033
61 00 10 20	5.850 11.699	1.420 1.413 1.405	2.840 2.825 2.810	4.261 4.238 4.216	5.681 5.651 5.621	7.101 7.064 7.026	8.521 8.476 8.431		62°	63°
30 40 50	17.549 23.398 29.248	1.398 1.390 1.383	2.795 2.781 2.766	4.193 4.171 4.148	5.591 5.561 5.531	6.988 6.952 6.914	8.386 8.342 8.297	5 10	0.001 .004	0.001 .003
62 00 10 20 30 40 50	5.8 50 1 1.701 17.551 23.402 29.252	1.375 1.368 1.360 1.353 1.345 1.345 1.338	2.751 2.736 2.720 2.705 2.690 2.675	4.126 4.103 4.081 4.058 4.035 4.013	5.501 5.471 5.441 5.410 5.380 5.350	6.877 6.839 6.801 6.763 6.726 6.688	8.252 8.207 8.161 8.116 8.071 8.026	15 20 25 30	.008 .014 .022 .032	.008 .014 .022 .031
63 00		1.330	2.660 2.645	3.990	5.320	6.650 6.612	7.980		64°	
10 20 30 40 50	5.851 11.702 17.554 23.405 29.256	1.322 1.315 1.307 1.300 1.292	2.645 2.630 2.614 2.599 2.584	3.967 3.944 3.921 3.899 3.876	5.290 5.259 5.228 5.198 5.168	6.574 6.536 6.498 6.460	7.934 7.889 7.843 7.797 7.751	5 10 15 20	0.001 .003 .008 .013 .021	
64 00	•••••	1.284	2.569	3.853	5.1 37	6.422	7.706	25 30	.021	

TABLE 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128000

[Derivation of table explained on pp. liii-lvi.]

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional dis tances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' lopgitude.	25' longitude.	30' Iongitude.	I	DINAT DEVELO PARALL	PED
64°00′	Inches.	Inches. 1.284	Inches. 2.569	Inches. 3.853	Inches. 5.137	Inches. 6.422	Inches. 7.706	Longitude interval.	64°	65°
10 20 30 40 50	5.852 11.704 17.556 23.408 29.260	1.277 1.269 1.261 1.254 1.246	2.553 2.538 2.523 2.507 2.492	3.830 3.807 3.784 3.761 3.73 ⁸	5.106 5.076 5.045 5.014 4.984	6.383 6.345 6.307 6.268 6.230	7.660 7.614 7.568 7.522 7.476	-1	Inches. 0.001 .003	Inches. 0.001 .003
65 00 10 20 30 40	5.853 11.706 17.558 23.411 29.264	1.238 1.231 1.223 1.215 1.207	2.477 2.461 2.446 2.430 2.415	3.715 3.692 3.668 3.645 3.622	4.953 4.922 4.891 4.860 4.829	6.192 6.153 6.114 6.075 6.037	7.430 7.384 7.337 7.290 7.244	15 20 25 30	.008 .013 .021 .030	.007 .013 .020 .029
50 66 00		1.200	2.399 2.384	3·599 3·575	4.798 4.767	5.998 5.959	7.198 7.151		66°	67°
10 20 30 40 50	5.854 11.707 17.561 23.414 29.268	1.184 1.176 1.168 1.161 1.153	2.368 2.352 2.337 2.321 2.305	3.552 3.529 3.505 3.482 3.458	4.736 4.705 4.673 4.642 4.611	5.920 5.881 5.842 5.803 5.764	7.104 7.057 7.010 6.963 6.916	5 10 15 20	0.001 .003 .007 .013	0.001 .003 .007 .012
67 00 10 20 30	5.854 11.709 17.563	1.145 1.137 1.129 1.121	2.290 2.274 2.258 2.243	3·435 3·411 3·388 3·364	4.580 4.548 4.517 4.485	5.725 5.685 5.646 5.607	6.869 6.822 6.775 6.728	25 30	.020 .029	.019 .028
40 50	23.418 29.272	1.113 1.106	2.227 2.21 I	3.340 3.317	4.454 4.422	5.567 5.528	6.680 6.634		68°	69°
68 00 10 20 30 40 50	5.855 11.710 17.565 23.420 29.276	1.098 1.090 1.082 1.074 1.066 1.058	2.195 2.180 2.164 2.148 2.132 2.116	3.293 3.269 3.246 3.222 3.198 3.174	4.391 4.359 4.328 4.296 4.264 4.232	5.489 5.449 5.410 5.370 5.330 5.291	6.586 6.539 6.491 6.443 6.396 6.349	5 10 15 20 25 30	0.001 .003 .007 .012 .019 .027	0.001 .003 .006 .011 .018 .026
69 00 10 20	5.856 11.712	1.050 1.042 1.034	2.100 2.084 2.068	3.151 3.127 3.103	4.201 4.169	5.251 5.211	6.301 6.253			710
30 40 50	17.567 23.423 29.279	1.026 1.018 1.010	2.052 2.037 2.021	3.079 3.055 3.031	4.137 4.105 4.073 4.041	5.171 5.131 5.092 5.052	6.205 6.157 6.110 6.062	5 10	0.001	0.001
70 00 10 20 30 40 50	5.856 11.713 17.570 23.426 29.282	1.002 .994 .986 .978 .970 .962	2.005 1.989 1.972 1.956 1.940 1.924	3.007 2.983 2.959 2.935 2.911 2.886	4.009 3.977 3.945 3.913 3.881 3.881	5.012 4.972 4.931 4.891 4.851 4.811	6.014 5.966 5.917 5.869 5.821 5.773	15 20 25 30	.006 .011 .017 .024	.006 .010 .016 .024
71 OO 10	5.857	.954	1.908 1.892	2.862 2.838	3.816	4.771	5.725		7 2 ⁰	
20 30 40 50	5.057 11.714 17.572 23.429 29.286	.946 .938 .930 .922 .914	1.892 1.876 1.860 1.844 1.828	2.838 2.814 2.790 2.765 2.741	3.784 3.752 3.720 3.687 3.655	4.730 4.690 4.650 4.609 4.569	5.676 5.628 5.579 5.531 5.483	5 10 15 20	0.001 .003 .006 .010	
72 00		.906	1.811	2.717	3.623	4.529	5.434	25 30	.016 .023	

TABLE 20.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{126000}$.

[Derivation of table explained on pp. liii-lvi.]

of	ll dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL. `		DINAT	ES OF
Latitude c parallel.	Meridional di tances from even degree parallels.	5 ['] longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	l I	DINAT DEVELC PARALL	PED
-	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	72 ⁰	73°
72 ⁰ 00' 10 20	5.858 11.716	.906 .898 .889	1.811 1.795 1.779	2.717 2.693 2.668	3.623 3.590 3.558	4.529 4.488 4.447	5.434 5.386 5.336	Lon		
30 40 50	17.573 23.431 29.289	.881 .873 .865	1.763 1.746 1.730	2.644 2.620 2.595	3.525 3.493 3.460	4.407 4.366 4.325	5.288 5.239 5.190	5 10	Inches. 0.001 .003	Inches. 0.001 .002
73 00 10 20 30 40 50	5.858 11.717 17.575 23.434 29.292	.857 .849 .841 .832 .824 .816	1.714 1.697 1.681 1.665 1.648 1.632	2.571 2.546 2.522 2.497 2.473 2.448	3.428 3.395 3.362 3.330 3.297 3.264	4.285 4.244 4.203 4.162 4.121 4.081	5.141 5.092 5.044 4.994 4.945 4.897	15 20 25 30	.006 .010 .016 .023	.005 .010 .015 .021
74 00 10	5.859	.808 .800	1.616 1.599	2.424 2.399	3.232 3.199	4.040 3.999	4.847 4.798			
20 30 40	11.718 17.577 23.436	.791 .783 .775	1.583 1.566 1.550	2.374 2.350 2.325	3.160 3.133 3.100	3.957 3.916 3.875	4.748 4.699 4.650		74°	75°
50 75 00	29.295	.767	1.534	2.300	3.067 3.034	3.834 3.793	4.601 4.552	5 10 15	0.001 .002 .005	0.001 .002 .005
73 00 20 30 40 50	5.860 11.719 17.578 23.438 29.298	-759 .750 .742 .734 .726 .717	1.501 1.484 1.468 1.451 1.435	2.251 2.226 2.201 2.177 2.152	3.002 3.002 2.968 2.935 2.902 2.870	3.752 3.752 3.711 3.669 3.628 3.587	4.502 4.453 4.403 4.354 4.304	20 25 30	.009 .014 .020	.009 .013 .019
76 00 10	5.860	.709 .701	1.418 1.402	2.127 2.102	2.836 2.803	3.546 3.504	4.255 4.205			
20 30 40 50	11.720 17.580 23.440 29.300	.692 .684 .676 .668	1.385 1.368 1.352 1.335	2.078 2.053 2.028 2.003	2.770 2.737 2.704 2.671	3.463 3.421 3.380 3.339	4.155 4.105 4.056 4.006		76° 0.001	77°
77 00 10 20 30 40 50	5.860 11.721 17.582 23.442 29.302	.659 .651 .643 .634 .626 .618	1.319 1.302 1.285 1.269 1.252 1.235	1.978 1.953 1.928 1.903 1.878 1.853	2.638 2.604 2.571 2.538 2.504 2.471	3.297 3.256 3.214 3.172 3.131 3.089	3.956 3.907 3.856 3.806 3.757 3.706	10 15 20 25 30	.002 .005 .008 .013 .018	.002 .004 .007 .012 .017
78 00 10	5.861	.609 .601	1.219 1.202	1.828 1.803	2.438 2.404	3.047 3.005 2.964	3.656 3.606			
20 30 40	11.722 17.583 23.444	•593 •584 •576	1.185 1.169 1.152	1.778 1.753 1.728	2.371 2.338 2.304	2.922 2.880	3.556 3.506 3.456		78°	79°
50 79 00 10 20 30 40 50	29.304 5.861 11.723 17.584 23.445 29.306	.568 .559 .551 .542 .534 .526 .517	1.135 1.119 1.102 1.085 1.068 1.052 1.035	1.703 1.678 1.653 1.628 1.602 1.577 1.552	2.270 2.237 2.204 2.170 2.136 2.103 2.070	2.838 2.797 2.755 2.713 2.671 2.629 2.587	3.406 3.356 3.305 3.255 3.205 3.155 3.104	5 10 15 20 25 30	0.000 .002 .004 .007 .011 .016	0.000 .002 .004 .006 .010 .014
80 00	•••••	.509	1.018	1.527	2.036	2.545	3.054			

TABLE 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1287280.

[Derivation of table explained on pp. liii-lvi.]

of	al dis- om gree	-	CO-ORD	INATES (OF DEVE	LOPED	PARALLI	EL FOR-	.
Latitude (parallel.	Meridional dis tances from even degree parallels,	15' long	zitude.	30' lon;	gitude.	45' long	gitude.	1º long	gitude.
pa t	Me eve	x	у	x	у	x	У	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
0°00′ 15	8.588	8.647 8.646	.000. .000	17.293 17.293	.000. .001	25.940 25.939	.000. 100.	34.586	.000.
30 45	17.176 25.764	8.646 8.646	000. 000.	17.292 17.291	100. 100.	25.938 25.937	.001 .002	34.584 34.582	.003 .004
1 00	34.352	8.645	.000	17.291	.001	25.936	.003	34.581	.005
15	8.588	8.644	.000	17.289	.002	25.933	.003	34.577	.007
30 45	17.176 25.764	8.643 8.642	.000. 100.	17.287 17.285	.002 .002	25.930 25.927	.004 .005	34·573 34·569	800. 900.
2 00	34:352	8.641	.001	17.283	.003	25.924	.006	34.565	110.
15 30	8.588 17.176	8.640 8.638	100. 100.	17.279 17.276	.003 .003	25.919 25.914	.007 .007	34.559 34.552	.012 .014
45	25.765	8.636	·001	17.273	.004	25.909	.008	34.546	.015
3 00	34.353	8.635	.001	17.270	.004	25.904	.009	34.539	.016
15 30	8.588 17.177	8.633 8.630	100. 100.	17.265 17.260	.004 .005	25.898 25.891	.009 .010	34.530 34.521	.018 .019
4 5	25.765	8.628	.001	17.256	.005	25.884	.011	34.512	.020
4 00	34.353	8.626	.001	17.251	.005	25.877	.012	34.502	.021
15 30	8.589 17.177	8.623 8.620	100. 100.	17.245 17.240	.006 .006	25.868 25.859	.012 .013	34-491 34-479	.023 .024
45	25.766	8.617	.002	17.234	.006	25.850	.014	34.467	.025
5 00	34.354	8.614	.002	17.228	.007	25.842	.01 5	34.456	.026
15 30	8.589 17.177	8.610 8.607	.002 .002	17.221 17.213	.007 .007	25.831 25.820	.016 .016	34.441 34.427	.028 .029
45	25.766	8.603	.002	17.206	.008	25.809	.017	34.412	.030
6 00	34.355	8.600	.002	17.199	.008	2 5 .799	.018	34.398	.031
15 30	8.589 17.178	8.595 8.591	.002 .002	17.191 17.182	.008 .008	25.786 25.773	.019 .020	34.381 34.364	.033
45	25.767	8.587	.002	17.174	.009	25.760	.021	34.304	.034 .035
7 00	34.356	8.583	.002	17.165	.009	25.748	.021	34.330	.037
15 30	8.589 17.179	8.578 8.573	.002 .003	17.155 17.145	.009 .009	25.733 25.718	.022 .022	34.310 34.291	.038 .040
45	25.768	8.573 8.568	.003	17.136	.010	25.704	.022	34.272	.040
8 00	34.358	8.563	.003	17.126	.010	25.689	.023	34.252	.042
15 30	8.590 17.180	8.558 8.552	.003 .003	17.115 17.104	.010 .011	25.673 25.656	.024	34.230	.044
45	25.769	8.546	.003	17.093	.011	25.639	.024	34.208 34.186	.045 .046
9 00	34.359	8.541	.003	17.082	.012	25.622	.026	34.163	.047
15 30	8.590 17.180	8.535 8.528	.003 .003	17.069	.012 .012	25.604 25.585	.027	34.138	.048
45	25.771	8.522	.003	17.045	.012	25.505	.027 .028	34.114 34.089	.050 .051
10 00	34.361	8.516	.003	17.032	.01 3	25.548	:029	34.064	.052
	N TABLE							1	J

.

TABLE 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{128720}$.

[Derivation of table explained on pp. liii-lvi.]

ъ.	al dis- om gree		CO-ORDI	NATES C	F DEVE	LOPED F	ARALLE	L FOR -	
Latitude (parallel.	Meridional dis tances from even degree parallels.	15' long	gitude.	30' long	gitude.	45' lon	gitude.	1º long	gitude.
Lat	Mer evi	x	У	x	у	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10°00' 15	8.591	8.516 8.509	.003 .003	17.032 17.019	.013 .013	25.548 25.528	.029 .030	34.064 34.037	.052 .054
30 45	17.181 25.772	8.502 8.496	.003 .003	17.005 16.991	.013 .014	25.507 25.487	.031 .032	34.010 33.982	.055 .056
11 00	34.363	8.489	.004	16.977	.014	25.466	.032	33-955	.057
15	8.591	8.481	.004 .004	16.962 16.947	.014 .015	25.444	.033	33.925 33.895	.058
30 45	17.183 25.774	8.474 8.466	.004	16.933	.015	25.421 25.399	.033 .034	33.865	.059 .060
12 00	34.365	8.459	.004	16.918	.015	25.376	.035	33.835	.061
15 30	8.592 17.184	8.451 8.443	.004 .004	16.901 16.885	.016 .016	25.352 25.328	.035 .036	33.803 33.770	.063 .064
45	25.776	8.434	.004	16.869	.016	25.304	.036	33.738	.065
13 00	34.368	8.426	.004	16.853	.017	25.279	.037	33.706	.066
15 30	8.592 17.185	8.418 8.409	.004 .004	16.835 16.818	.017 .017	25.253 25.227	.038 .039	33.67 I 33.636	.067 .069
45 45	25.778	8.400	.004	16.800	810.	25.201	.040	33.601	.070
14 00	34.370	8.391	.004	16.783	810.	25.174	.040	33.566	.07 I
15 30	8.593 17.186	8.382 8.373	.005 .005	16.764 16.745	810. 810.	25.146 25.118	.041 .041	33.528	.072 .073
45	25.780	8.363	.005	16.726	.019	25.090	.042	33.453	.074
15 00	34-373	8.354	.005	16.708	.019	25.061	.042	33.415	.075
15 30	8.594 17.188	8.344 8.334	.005 .005	16.688 16.668	.019 .019	25.031 25.001	.043 .044	33-375 33-335	.077 .078
45	25.782	8.324	.005	16.647	.020	24.971	.045	33.295	.079
16 00	34.376	8.314	.005	16.627	.020	24.941	.045	33.255	.080
15 30	8.595	8.303 8.292	.005 .005	16.606 16.585	.020 .020	24.909 24.877	.045 .046	33.212 33.170	.081 .082
45	25.784	8.282	.005	16.564	.021	24.845	.046	33.127	.083
17 00	34·3 79	8.271	.005	16.542	.021	24.813	.047	33.084	.084
15 30	8.596 17.191	8.260 8.249	.005 .005	16.520 16.497	.021 .021	24.779 24.746	.048 .049	33.039 32.994	.085 .087
45	25.787	8.237	.000	16.475	.022	24.712	.050	32.949	.088
18 00	34.382	8.226	.006	16.452	.022	24.678	.050	32.904	.089
15 30	8.596	8.214 8.202	.006 .006	16.428 16.404	.022 .023	24.642 24.607	.051 .051	32.856 32.809	.090 .091
45	25.790	8.190	.006	16.381	.023	24. 57 I	.052	32.761	.092
19 00	34.386	8.178	.006	16.357	.023	24.535	.052	32.714	.093
15 30	8.597 17.195	8.166	.006 .006	16.332 16.307	.023 .024	24.498 24.460	.053 .054	32.664 32.614	.094 .095
45	2 5.792	8.141	.00G	16.282	.024	24.422	.055	32.563	.096
20 00	34.390-	8.128	.006	16.257	.024	24.385	.055	32.513	.097

TABLE 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128730.

[Derivation of table explained on pp. lili-lvi.]

	l dis- om ree		CO-ORD	INATES	OF DEVE	LOPED I	PARALLI	EL FOR-	
Latitude of parallel.	Meridional dis tauces from even degree parallels.	15′ lon	igitude.	30⁄ lor	gitude.	45' lor	ngitude.	r° lor	gitude.
Lati	Mer tau eve par	x	У	x	У	x	у	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20°00′ 15	8.598	8.128 8.115	.00б .00б	16.257 16.230	.024 .024	24.385 24.346	.055 .056	32.513 32.461	.097 .098
30 45	17.197 25.795	8.102 8.089	.006 .006	16.204 16.178	.025 .025	24.306 24.267	.056 .057	32.408 32.356	.099 .100
21 00	34.394	8.076	.006	16.152	.025	24.227	.057	32.303	.101
15	8.599	8.062	.006	16.124	.025	24.186	.058	32.248	.102
30 45	17.199 25.798	8.048 8.035	.006 .007	16.097 16.069	.02б .02б	24.145 24.104	.058 .059	32.193 32.138	.103 .104
22 00	34.398	8.021	.007	16.042	.026	24.062	.059	32.083	.105
15 30	8.600 17.201	8.006 7.992	.007 .007	16.013 15.984	.026 .027	24.019 23.976	.060 .060	32.026 31.968	.106 .107
45	25.801	7.978	.007	1 5.955	.027	23.933	.061	31.911	.108
23 00	34.402	7.963	.007	1 5.927	.027	23.890	.обі	31.853	.109
15 30	8.602 17.203	7.948 7.933	.007 .007	1 5.897 1 5.867	.027 .028	23.845 23.800	.062 .062	31.794 31.734	.109 .110
45	25.804	7.933 7.918	.007	15.837	.028	23.756	.063	31.674	.111
24 00	34.406	7.904	.007	1 5.807	.028	23.711	.063	31.614	.112
15 30	8.603 17.205	7.888 7.872	.007 .007	15.776 15.745	.028 .029	23.664 23.617	.064 .064	31.552 31.489	.113 .114
45	25.808	7.857	.007	15.713	.029	23.570	.065	31.427	.115
25 00	34.410	7.841	.007	15.682	.029	23.524	.065	31.365	.116
15 30	8.604 17.207	7.825 7.809	.007 .007	15.650 15.617	.029 .029	23.475 23.426	.065 .066	31.300 31.235	.117 .117
45	25.811	7.793	.007	1 5.585	.030	23.378	.067	31.170	.118
26 00	34.415	7.776	.007	15.553	.030	23.329	.067	31.106	.119
15 30	8.605 17.210	7.760 7.743	.007 .008	15.519 15.486	.030 .030	23.279 23.229	.067 .068	31.039 30.972	.120 .121
45	25.814	7.726	.008	1 5.452	.030	23.179	.068	30.905	.121
27 00	34.419	7.709	.008	15.419	.031	23.128	.069	30.838	.122
15 30	8.606 17.212	7.692 7.675	.008 .008	15.384 15.350	.031 .031	23.076 23.024	.069 .070	30.769 30.699	.123 .124
45	25.818	7.657	.008	15.315	.031	22.972	.070	30.630	.124
28 00	34.424	7.640	.008	15.280	.031	22.920	.070	30.560	.125
15 30	8.607 17.21 5	7.622 7.604	800. 800.	1 5.244 1 5.208	.031 .032	22.866 22.813	.07 I	30.489	.126 .127
45	25.822	7.586	.008	15.173	.032	22.759	.071	30.417	.127
29 00	34.430	7.568	.008	15.137	.032	22.705	.072	30.274	.1 28
15 30	8.609 17.217	7.550 7.531	.008 .008	15.100 15.063	.032 .032	22.650 22.594	.072 .073	30.200 30.125	.129
45	25.826	7.513	.008	15.026	.033	22.539	.073	30.051	.130 .130
30 00	34-435	7 ·494	.008	14.989	.033	22.483	.0 74	29.978	1 31
Ľ	<u>، </u>		-						<u></u>

TABLE 21.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{126720}$.

[Derivation of table explained on pp. liii-lvi.]

of	il dis- om ree		CO-ORD	INATES (OF DEVE	LOPED	PARALLI	EL FOR-	
Latitude c parallel.	Meridional dis tances from even degree parallels.	15' lor	gitude.	30' lor	igitude.	45' lor	gitude.	1° lon	gitude.
Lati	Mer tan eve	x	У	x	У	x	у	x	У
30°00′	Inches.	Inches. 7·494	Inches. .008	Inches. 14.989	Inches. .033	Inches. 22.483	Inches. .074	Inches. 29.978	Inches. .131
15 30 45	8.610 17.220 25.830	7•475 7•456 7•437	.008 .008 .008	14.951 14.913 14.874	.033 .033 .033	22.426 22.369 22.312	.074 .074 .075	29.902 29.825 29.749	.131 .132 .133
31 00	34.440	7.418	.008	14.836	.033	22.254	.075	29.672	.133
15 30 45	8.611 17.213 25.834	7.398 7.379 7.359	800. 800. 800.	14.797 14.758 14.718	.033 .034 .034	22.195 22.137 22.078	.07 5 .076 .076	29.594 29.515 29.437	.134 .135 .135
32 00	34.446	7.340	.008	14.679	.034	22.019	.076	29.358	.136
15 30 45	8.613 17.225 25.838	7.319 7.299 7.279	.008 .009 .009	14.639 14.598 14.558	.034 .034 .034	21.958 21.898 21.837	.077 .077 .077	29.278 29.197 29.116	.136 .137 .137
33 00	34.451	7.259	.009	14.518	.034	21.777	.078	29.036	.138
15 30 45	8.614 17.228 25.842	7.238 7.217 7.197	.009 .009 .009	14.476 14.435 14.393	.035 .035 .035	21.714 21.652 21.590	.078 .078 .078	28.953 28.869 28.786	.138 .139 .139
34 00	34.456	7.176	.009	14.352	.035	21.527	.079	28.703	.140
15 30 45	8.615 17.231 25.846	7.154 7.133 7.112	.009 .009 .009	14.309 14.266 14.224	.035 .035 .035	21.464 21.400 21.336	.079 .079 .080	28.618 28.533 28.448	.141 .141 .142
35 00	34.462	7.091	.009	14.181	.035	21.272	.080	28.362	.142
15 30 45	8.617 17.234 25.851	7.069 7.047 7.025	.009 .009 .009	14.138 14.094 14.050	.036 .036 .036	21.207 21.141 21.076	.080 .080 .080	28.275 28.188 28.101	.142 .143 .143
36 00	34.468	7.003	.009	14.007	.036	21.010	.081	28.014	•144
15 30 45	8.618 17.237 25.855	6.981 6.959 6.936	.009 .009 .009	13.962 13.917 13.873	.036 .036 .036	20.943 20.876 20.809	.081 .081 .80.	27.924 27.835 27.745	.144 .144 .145
37 00	34.474	6.914	.009	13.828	.036	20.742	.082	27.655	.145
15 30 45	8.620 17.240 25.860	6.891 6.868 6.845	.009 .009 .009	13.782 13.736 13.690	.036 .036 .037	20.673 20.604 20.536	.082 .082 .082	27.564 27.472 27.381	.145 .146 .146
38 00	34.480	6.822	.009	13.645	.037	20.467	.082	27.289	.147
15 30 45	8.621 17.243 25.864	6.799 6.775 6.752	.009 .009 .009	13.598 13.551 13.504	.037 .037 .037	20.397 20.326 20.256	.083 .083 .083	27.196 27.102 27.008	.147 .147 .147
39 00	34.485	6.729	.0 09	13.457	.037	20.186	.083	26.914	.148
15 30 45	8.623 17.246 25.868	6.705 6.681 6.657	.009 .009 .009	13.409 13.361 13.314	.037 .037 .037	20.114 20.042 19.970	.083 .083 .084	26.819 26.723 26.627	.148 .148 .148
40 00	34.491	6.633	.009	13.266	.037	19.899	.084	26.532	.149

SMITHSONIAN TABLES.

1

TABLE 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128/728.

[Derivation of table explained on pp. liii-lvi.]

i

jo	ll dis- om ree		CO-ORD	INATES (OF DEVE	LOPED 1	PARALLE	L FOR-	
Latitude c parallel.	Meridional dis tances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	r ^o long	gitude.
Lati	Mer tan eve par	x	У	x	У	x	у	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′ 15	8.624	6.633 6.608	.009 .009	13.266 13.217	.037 .037	19.899 19.825	.084 .084	26.532 26.434	.149 .149
30	17.249	6.584	.009	13.168	.037	19.752	.084	26.336	.149
45	25.873	6.560	.009	13.119	.037	19.679	.084	26.238	.149
41 00	34-497	6.535	.009	13.070	0 37	19.605	.0 84	26.140	.150
15	8.625	6.510 6.485	.009 .009	13.020 12.970	.037	19.530	.084 .084	26.041	.150
30 45	17.250 25.875	6.460	.009	12.920	.037 .037	19.456 19.381	.084	25.941 25.841	.150 .150
42 00	34.500	6.435	.009	12.871	.037	19.306	.085	25.741	.150
15	8.627	6.410	.009	12.820	.037	19.230	.085	25.640	.1 50
30 45	17.255 25.882	6.385 6.359	.009 .009	12.769 12.718	.038 .038	19.154 19.077	.085 .085	25.538 25.436	.151 .151
43 00	34.510	6.334	.009	12.667	.038	19.001	.085	25.335	.151
15	8.629	6.308	.009	12.615	.038	18.923	.085	25.231	.151
30 45	17.257 25.886	6.282 6.256	.009 .009	12.563 12.512	.038 .038	18.845 18.767	.085 .085	25.127 25.023	.151 .151
44 00	34.515	6.230	.009	12.4 6 0	.038	18.689	.085	24.919	.151
15	8.630	6.203	.009	12.407	.038	18.610	.085	24.814	.151
30	17.261 25.891	6.177 6.151	.009 .009	12.354 12.301	.038 .038	18.531 18.452	.085 .085	24.708 24.603	.151
45 00	34.522	6.124	.009	12.249	.038	18.373	.085		.151
		•					-	24.497	.151
15 30	8.632 17.264	6.097 6.07 I	.009 .009	12.195 12.141	.038 .038	18.292 18.212	.085 .085	24.390 24.283	.151 .151
45	25.896	6.044	.009	12.088	.038	18.131	.085	24.175	.151
46 00	34.528	6.017	.009	12.034	.038	18.051	.085	24.068	.151
15	8.633	5.990 5.962	.009 .009	11.979	.038	17.969 17.887	.085	23.959	.151
30 45	17.267 25.901	5.902 5.935	.009	11.925 11.870	.038 .038	17.805	.085 .085	23.849 23.740	.151 .151
47 00	34.534	5.908	.009	11.815	.038	17.723	.085	23.631	.151
15	8.635	5.880	.009	11.760	.038	17.640	.085	23.520	.151
30 45	17.270 25.905	5.852 5.824	.009 .009	11.704 11.648	.038 .038	17.556 17.473	.085 .085	23.408 23.297	.151 .151
48 00	34.540	5.796	.009	11.593	.038	17.389	.085	23.186	.1 50
15	8.637	5.768	.009	11.536	.038	17.305	.085	23.073	.1 50
30 45	17.273 25.910	5.740 5.712	.009 .009	11.480 11.424	.038 .037	17.220 17.135	.084 .084	22.960 22.847	.1 50 .1 50
49 00	34.546	5.684	.009	11.367	.037	17.051	.084	22.734	.1 50
15	8.638	5.655	.009	11.310	.037	16.965	.084	22.620	.150
30 45	17.276 25.914	5.655 5.626 5.598	.009	11.253	.037	16.879	.084 .084	22.505	.150
45 50 00	34.55 ²	5.598 5.569	.009 .009	11.195 11.138	.037 .037	16.793 16.707	.084 .084	22.391 22.276	.150 .150
L									

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{126720}$.

[Derivation of table explained on pp. lin-lvi.]

50°00′ 15	tances from even degree parallels.	x Inches.	ritude. y	30' long	CO-ORDINATES OF DEVELOPED PARALLEL FOR -										
50°00′ 15	nches.		y	x y		-5.50	Situac.	1° long	itude.						
50°00′ 15		Inches.		x	у	x	у	x	у						
15	8.640		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.						
		5.569 5.540	.009 .009	11.138 11.080	.037 .037	16.707 16.620	.084 .084	22.276 22.160	.1 50 .149						
II J ^o I ^{*/}	7.279	5.511	.009	11.022	.037	16.532	.084	22.043	.149						
45 2	5.919	5.482	.009	10.963	.037	16.445	.083	21.927	.149						
51 00 3.	4.558	5.453	.009	10.905	.037	16.358	.083	21.810	.148						
	8.641	5.423	.009	10.846	.037	16.269	.083	21.692	.148						
	7.282 5.924	5.394 5.364	.009	10.787 10.728	.037 .037	16.181 16.092	.083 .083	21.574 21.456	.148 .147						
						-	-	_							
	4.565	5.334	.009	10.669	.037	16.004	.083	21.338	.147						
15 30 I	8.643 7.285	5.305 5.275	.009	10.609 10.549	.036 .036	15.914 15.824	.082 .082	21.218 21.099	.146 .146						
45 2	5.928	5.245	.009	10.490	.036	15.734	.082	20.979	.145						
53 00 3	4.571	5.215	.009	10.430	.036	1 5.64 5	.082	20.860	.145						
	8.644	5.185	. 0 09	10.369	.036	15.554	.082	20.738	.145						
	7.288	5.154	.009 .009	10.309 10.248	.036	15.463	180. 180.	20.617	.144						
	5.932	5.124	.009		.036	15.372		20.496	.144						
	4.576	5.094	.009	10.187	.036	1 5.281	.081	20.374	.144						
	8.646	5.063 5.032	.009 .009	10.126 10.064	.036 .036	15.189 15.097	180. 080.	20.252 20.120	.143 .143						
	5.937	5.002	.009	10.003	.036	15.004	.080	20.006	.143						
55 00 3	34.582	4 . 97 I	.009	9.942	.036	14.912	.080	19.883	.142						
15	8.647	4.94 0	.009	9.879	.035	14.819	.080	19.759	.141						
	7.294	4.909 4.878	.009 .009	9.817	.035	14.726 14.633	.079	19.634	.141						
	5.941		.009	9-755	.035	14.033	.079	19.510	.140						
II ⊢	4.588	4.846	.009	9.693	.035	14.539	.0 79	19.386	.140						
E 1 U	8.648	4.815 4.784	.009 .009	9.630 9.567	.035 .035	14.445 14.351	.079 .078	19.260	.140						
	15.946	4.752	.009	9.504	.035	14.351	.078	19.134 19.008	.139 .139						
57 00 3	4-594	4.720	.009	9.44I	.035	14.162	.078	18.882	.138						
15	8.650	4.689	.009	9-377	.035	14.066	.077	18.754	.1 38						
30 1	7.300	4.657	.009	9.314	.034	13.970	.077	18.627	·137						
	5.950	4.625	.009	9.250	.034	13.875	.077	18.500	.137						
	4.600	4.593	.009	9.186	.034	13.779	.076	18.372	.136						
ا مما	8.651	4.561	.008	9.122	.034	13.683	.076	18.244 18.115	.135						
	5.954	4.529 4.497	.008	8.993	.034	13.500	.075	17.986	.135 .134						
	4.605	4.464	.008	8.929	.033	13.393	.075	17.858	.134						
15	8.653	4.432	.008	8.864	.033	13.296	.075	17.728	.133						
30 1	7.305	4.399	.008	8.799	.033	13.198	.075	17.597	.133						
45 2	5.958	4.367	.008	8.7 34	.033	13.100	.074	17.467	.132						
60 00 3	4.611	4.334	.008	8.669	.033	13.003	.074	17.337	.131						

TABLE 21. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 128/280

[Derivation of table explained on pp. liii-lvi.]

۲.	ll dis- om ree		CO-ORDINATES OF DEVELOPED PARALLEL FOR										
Latitude o parallel.	Meridional dis- tances from even degree parallels.	15' lot	igitude.	30' lor	gitude.	45' lor	igitude.	ro lon	gitude.				
Lati	Mer tan eve	x	у	x	у	x	у	x	у				
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.				
60°00′ 15	 8.654	4.334 4.301	800. 800.	8.669 8.603	.033 .032	13.003 12.904	.074 .074	17.337 17.206	.131 .131				
30 45	17.308 25.962	4.269 4.236	800. 800.	8.537 8.471	.032 .032	12.806 12.707	.073 .073	17.074 16.943	.130 .129				
61 00	34.616	4.203	.008	9 8.406	.032	12.608	.072	16.811	.128				
15	8.655	4.170	.008	8.339	032	12.509	.072	16.679	.128				
30 45	17.311 25.966	4.136 4.103	800. 800.	8.273 8.207	.032 .031	12.410 12.310	.072 .071	16.546 16.413	.127 .126				
62 00	34.621	4.070	.008	8.140	.031	12.210	. 07 I	16.280	.125				
15	8.657	4.036 4.003	800. 800.	8.073 8.006	.031	12.110 12.009	.07 I .070	16.146 16.012	.125 .124				
30 45	17.313 25.970	3.970	.000	7.939	.031 .031	11.909	.070	15.878	.123				
63 00	34.626	3.936	.008	7.872	.031	11.808	.069	I 5. 744	.1 22				
15 30	8.658 17.316	3.902 3.868	.008 .007	7.804	.030 .030	11.707 11.605	.069 .068	1 5.609 1 5.474	.122 .121				
45	25.974	3.835	.007	7.737 7.669	.030	11.504	.068	15.338	.120				
64 00	34.632	3.801	. 007 [′]	7.602	.030	11.402	.067	1 5.203	.119				
15 30	8.659 17.318	3.767	.007 .007	7·533 7.465	.029 .029	11.300 11.198	.067 .066	15.067 14.930	.119 .118				
45	25.977	3·733 3.698	.007	7.397	.029	11.096	.066	14.794	.117				
65 00	34.636	3.664	.007	7.329	.029	10.993	.065	14.658	.116				
15 30	8.660 17.321	3.630 3.596	.007 ,007	7.260 7.191	.028 .028	10.890 10.787	.065 .064	14.520 14.383	.115 .114				
45	25.981	3.561	.007	7.123	.028	10.684	.064	14.245	.113				
66 00	34.641	3.527	.007	7.054	.028	10.581	.063	14.108	.112				
15 30	8.661 17.323	3.492 3.458	.007 .007	6.984 6.915	.028 .027	10.477 10.373	.063 .062	13.969 13.830	.111				
45	25.984	3.423	.007	6.915 6.846	.027	10.269	.062	13.692	.110				
67 00	34.646	3.388	.007	6.776	.027	10.165	.061	13.553	.109				
-15 30	8.663 17.325	3.353 3.318	.007 .007	6.706 6.637	.027 .026	10.060 9.955	.061 .060	13.413 13.273	.108 .107				
-45	2 5.988	3.283	.007	6.567	.026	9.850	.060	13.134	.106				
68 00	34.650	3.248	.007	6.497	.026	9.746	.059	12.994	.105				
-15 -30	8.664 17.327	3.213 3.178	.007 .006	6.427 6.356	.026 .025	9.640 9.535	.059 .058	12.854 12.713	.104 .103				
45	25.991	3.143	.006	6.356 6.286	.025	9.429	.058	12.572	.103				
69 00	34.655	3.108	.006	6.216	.025	9.323	.057	12.431	.101				
15 30	8.665 17.329	3.072 3.037	.006 .006	6.145 6.074	.025 .024	9.217 9.111	.057 .056	12.290	.100 .099				
45	25.994	3.002	.006	6.003	.024	9.005	.056	12.006	.099				
70 00	34.659	2.966	.006	5.932	.024	8.899	.055	11.865	.097				

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{128720}$.

[Derivation of table explained on pp. liii-lvi.]

1	om om gree		CO-ORDI	INATES (OF DEVE	LOPED I	PARALLE	L FOR -	
Latitude o parallel.	Meridional dis- tances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	ro Jonj	gitude.
pa	Me tar pa	x y		x	У	x	у	x	у
70 ⁰ 00' 15 30	Inches. 8.666 17.331	Inches. 2.966 2.930 2.895 2.859	Inches. .006 .006 .006 .006	Inches. 5.932 5.861 5.790	Inches. .024 .024 .023	Inches. 8.899 8.792 8.685	Inches. .055 .055 .054	Inches. 11.865 11.722 11.580	Inches. .097 .096 .095
45 71 00	25.997 34.663	2.859	.000	5.718 5.647	.023	8.578 8.471	.053 .052	11.437	.094 .093
15 30 45	8.667 17.333 26.000	2.788 2.752 2.716	.006 .006 .006	5.576 5.504 5.432	.023 .022 .022	8.363 8.256 8.148	.052 .051 .051	11.151 11.008 10.864	.092 .091 .090
72 00	34.667	2.680	.006	5.360	.022	8.040	.050	10.720	.089
1 5 30 45	8.668 17.335 26.003	2.644 2.608 2.572	.006 .005 .005	5.288 5.216 5.144	.022 .021 .021	7.932 7.824 7.716	.050 .049 .049	10.576 10.432 10.288	.088 .087 .086
73 00	34.670	2.536	.005	5.072	.021	7.608	.048	10.144	.085
15 30 45	8.668 17.337 26.006	2.500 2.463 2.427	.005 .005 .005	4.999 4.927 4.854	.021 .020 .020	7·499 7·390 7.281	.048 .047 .046	9.998 9.854 9.708	.084 .083 .081
74 00	34.674	2.391	.005	4.782	.020	7.172	.045	9.563	.080
15 30 45	8.669 17.339 26.008	2.354 2.318 2.281	.005 .005 .005	4.709 4.636 4.563	.020 .019 .019	7.063 6.954 6.844	.044 .044 .043	9.417 9.272 9.126	.079 .078 .077
7500	34.677	2.245	.005	4.490	.019	6.735	.043	8.980	.076
15 30 45	8.670 17.340 26.010	2.208 2.172 2.135	.004 .004 .004	4.417 4.343 4.270	010. 810. 810.	6.625 6.515 6.405	.042 .042 .041	8.834 8.687 8.540	.074 .073 .072
76 00	34.680	2.098	.004	4.197	.018	6.296	.040	8.394	.071
15 30 45	8.671 17.342 26.013	2.062 2.025 1.988	.004 .004 .004	4.123 4.050 3.976	.018 .017 .017	6.185 6.075 5.964	.040 .039 .038	8.247 8.100 7.952	.069 .068 .067
77 00	34.684	1.951	.004	3.903	.017	5.854	.037	7.805	.066
15 30 45	8.672 17.343 26.015	1.914 1.877 1.840	.004 .004 .004	3.829 3.755 3.681	.017 .016 .016	5.743 5.632 5.522	.037 .036 .036	7.658 7.510 7 .3 62	.065 .064 .063
78 00	34.686	1.804	.004	3.607	.015	5.411	.035	7.214	.062
15 30 45	8.672 17.344 26.017	1.766 1.729 1.692	.004 .004 .004	3•533 3•459 3•385	.015 .015 .014	5.300 5.188 5.077	.034 .034 .033	7.066 6.918 6.769	.060 .059 .058
79 00	34.689	1.655	.004	3.310	.014	4.966	.032	6.621	.057
15 30 45	8.673 17.346 26.018	1.618 1.581 1.544	.003 .003 .003	3.236 3.162 3.087	.014 .013 .013	4.854 4.742 4.631	.031 .030 .030	6.472 6.323 6.174	.055 .054 .053
80 00	34.691	1.506	.003	3.013	.013	4.519	.029	6.026	.052

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 53860.

[Derivation of table explained on pp. liii-lvi.]

								,		
			0010040	OF DEV		PARALL	e t			
	dis-	AB	SCISSAS	OF DEV.	FLOPED	PARALL	56.			
je .	Meridional di tances from even degree parallels.		1	······································	,		,	01	RDINAT	ES OF
llel	de le le		1					DEVEL	OPED	
Latitude o parallel.	Meridional tances froi even degre parallels.	5	10'	15	20'	25	30'	:	PARALI	LEL.
La La	Para	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.	1		
	••									
					<u> </u>					
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	e .		
	Inches.	Inches.	Inches.	Incres.	Incres.	Inches.		A II	o°	Io
0°00′		5.764	11.529	17.293	23.058	28.822	34.586	ferg	0-	1-
		57 1						Longitude interval.		
10	11.451	5.764	11.528	17.293	23.057	28.821	34.585	<u> </u>		
20	22.901	5.764	11.528	17.292	23.056	28.821	34.585		Inches.	Inches.
30	34.352	5.764	11.528	17.292	23.056	28.820	34.583	5'	0.000	0.000
40	. 45.803	5.764	11.528	17.291	23.055	28.819	34.583	10	.000	.000
50	57.254	5.764	11.527	17.291	23.054	28.818	34.582	15	.000	.00I
	(0							20	.000	.001
IOO	68.704	5.764	11.527	17.291	23.054	28.818	34.581	25	.000	.002
10		1				.00.0		30	.000	.003
10 20	11.451	5.763	11.526	17.289 17.288	23.052	28.816 28.813	34.579			
30	22.901	5.763	11.525		23.050	28.813	34.576			
40	34.352 45.803	5.762 5.762	11.524	17.287 17.285	23.049	28.809	34.573			
		5.702	11.524		23.047		34.571			
50	57.254	5.761	11.523	17.284	23.045	28.807	34.568	—		¦.
2 00	68.704	5.761	11.522	17.283	23.044	28.805	34.565		2 ⁰	3°
		3.701	11.522	1/.205	23.044	20.005	34.303		-	5
10	11.451	5.760	11.520	17.281	23.041	28.801	34.561			
20	22.902	5.759	11.519	17.278	23.038	28.797	34.556	5	0.000	0.000
30	34.353	5.759	11.517	17.276	23.035	28.794	34.552	10	.001	.001
40	45.804	5.758	11.516	17.274	23.032	28.790	34.548	15	.001	.002
50	57.254	5.757	11.514	17.272	23.029	28.786	34.543	20	.002	.003
	57 - 54	1.1.21	3-4	-,,-	-3.0-3	201/00	34.242	25	.004	.005
3 00	68.705	5.756	11.513	17.270	23.026	28.783	34.539	30	.005	.008
		5.5		· ·	3		51.222			
10	11.451	5.756	11.511	17.267	23.022	28.778	34.533			
20	22.902	5.754	11.509	17.264	23.018	28.773	34.527			l li
30	34.353	5.753	11.507	17.260	23.014	28.767	34.520			
40	45.804	5.752	11.505	17.257	23.010	28.762	34.514			
50	57.255	5.75I	11.503	17.254	23.006	28.757	34.508		4°	5°
4 00	68.7 0 6						1		4	3
4 00	08.700	5.750	11.501	17.251	23.002	28.752	34.502			
10	11.451	5740	11.498	10.040	22.996	a9	A	5	0.000	0.000
20	22.903	5·749 5·748	. 11.496	17.247	22.990	28.746	34.495	ιõ	.001	.00I
30	34·354	5.746		17.243	22.991	28.739	34.487	15	.003	.003
40	45.805	5.740	11.493 11.490	17.240 17.236	22.980	28.733	34.479	20	.005	.00Č
50	57.256		11.490			28.726	34.471	25	.007	.009
5-	51.250	5.744	11.400	17.232	22.976	28.720	34.463	30	.011	.013
5 00	68.708	5.743	11.485	17.228	22.970	28.713	24.456			
		5.1-15	55	- / - 20		20.713	34.456			
10	11.452	5.741	11.482	17.223	22.964	28.705	34.446			
20	22.903	5.739	11.479	17.218	22.958	28.697	34.440			l li
30	34.355	5.738	11.476	17.213	22.951	28.680	34.427		<u> </u>	
40	45.806	5.736	11.472	17.200	22.945	28.681	34.417		6°	7 ⁰
50	57.258	5.735	11.469	17.204	22.938	28.673	34.408			1
					10-				· '	I
600	68.710	5.733	11.466	17.199	22.932	28.665	34.398	5	0.000	0.000
						-	0.07	ĩŏ	.002	.002
10	11.452	5.73I	11.462	17.193	22.924	28.656	34.387	15	.004	.005
20	22.904	5.729	11.458	17.188	22.917	28.646	34.37.5	20	.007	.008
30	34.356	5.727 ·	11.455	17.182	22.910	28.637	34.364	25	.011	.013
40	45.808	5.726	11.451	17.177	22.902	28.637 28.628	34.353	30	.016	.018
50	57.260	5.724	11.447	17.171	22.894	28.618	34.342	ĩ		
	69			_				1		
7 00	68.712	5.722	11.443	17.165	22.887	28.609	34.330			
h					l					
	IAN TABL									

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 688860.

[Derivation of table explained on pp. liü-lvi.]

	dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5 [°] lopgitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINA) DEVEL(PARALI	OPED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
7°00′	68.712	5.722	11.443	17.165	22.887	28.609	34.330	Longitude interval.	7°	8°
10 20	11.452	5.720 5.717	11.439 11.435	17.159 17.152	22.878 22.869	28.598 28.587	34.317 34.304	н.=	Inches.	Inches.
30 40	34.358 45.810	5.715 5.713	11.430 11.426	17.146 17.139	22.861 22.852	28.576 28.565	34.291 34.278	5' 10	0.000	0.001 .002
50 8 00	57.262 68.715	5.711 5.709	11.422 11.417	17.132 17.126	22.843 22.834	28.554 28.543	34.265 34.252	15 20	.005 .008	.005 .009
10	11.453	5.706	11.412	17.119	22.825	28.531	34.237	25 30	.013 .018	.014 .021
20 30 40	22.906 34.359 45.812	5.704 5.701 5.699	11.407 11.403 11.398	17.111 17.104 17.096	22.815 22.805 22.795	28.519 28.507 28.494	34.222 34.208 34.193			
50	57.265	5.696	11.393	17.089	22.786	28.482	34.178			
9 00 10	68.718 11.454	5.694 5.691	11.388 11.382	17.082 17.073	22.776 22.764	28.470 28.456	34.163 34.147		9°	100
20 30	22.907 33.361	5.688 5.686	11.377 11.371	17.065 17.057	22.7 54 22.742	28.442 28.428	34.130 34.114	5 	0.001 ,003 ,006	0.001 .003 .006
40 50	45.814 57.268	5.683 5.680	11.366 11.360	17.049 17.040	22.732 22.720	28.41 5 28.401	34.097 34.081	15 20 25	.010. О10.	110. 810.
10 00	68.722	5.677	11.355	17.032	22.710	28.387	34.064	30	.023	.026
10 20 30	11.454 22.909 34.263	5.674 5.671 5.668	11.349 11.343 11.337	17.023 17.014 17.005	22.698 22.685 22.673	28.372 28.357 28.342	34.046 34.028 34.010			
40 50	45.817 57.272	5.665 5.662	11.331 11.324	16.996 16.987	22.661 22.649	28.327 28.311	33.992 33.973		110	12 ⁰
11 00	68.726	5.659	11.318	16.978	22.637	28.296	33-955		0.001	0.001
10 20 30	11.455 22.910 34.365	5.656 5.652 5.649	11.312 11.305 11.298	16.968 16.958 16.948	22.624 22.610 22.597	28.280 28.263 28.246	33.935 33.915 33.895	5 10 15	.003 .007	.003 .008
40 50	45.820	5.646 5.642	11.292 11.285	16.938 16.928	22.584	28.230 28.213	33.875 33.855	20 25 30	.013 .020 .028	.014 .021 .031
12 00	68.7 30	5.639	11.278	16.918	22.557	28.196	33.835	5		5
10 20	11.456 22.912	5.636 5.632	11.271 11.264	16.907 16.896	22.542 22.528	28.178 28.160	33.814 33.792			
30 40 50	34.367 45.823 57.279	5.628 5.625 5.621	11.257 11.250 11.242	16.885 16.874 16.864	22.514 22.499 22.485	28.142 28.124 28.106	33.770 33.749 33.727		13°	I4°
13 00	68.735	5.618	11.235	16.853	22.470	28.088	33.706	5 10	0.001 .004	0.001 .004
10 20	11.457 22.913	5.614 5.610	11.227 11.220	16.841 16.829	22.455 22.439	28.069 28.049	33.682 33.659	15 20	.008 .015	.009 .016
30 40 50	34.370 45.827 57.284	5.606 5.602 5.598	11.212 11.204 11.196	16.818 16.806 16.794	22.424 22.408 22.392	28.030 28.010 27.991	33.635 33.612 33.589	25 30	.023 .033	.025 .035
14 00	68.740	5·594	11.188	16.783	22.377	27.971	33.565			
·										1

TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 88

[Derivation of table explained on pp. lili-lvi.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		dis.	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	lde of lel.	ional is fron degre lels.				1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	atitu	ance	5	10'	15'	20'	25'	30'	1	PARAL	LEL.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	Z 2 0 H	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	al.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14°00′	68.740	5.594	11.188	16.783	22.377	27.971	33.565	Longi	140	15°
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11.458	5.590			22.360	27.950	33.540	<u> </u>		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5.586		16.758					Inches.	Inches.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.3/3	5.502				27.909				1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		57.288									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.00	68.746	5.560	11.138	16.708	22.277	27.846	33.415	20	.01Ó	.017
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.505					33.309	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.556		16.667						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		45.834			16.654			33.308			Í
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	57.293	5.547	11.094	16.641	22.188	27.735	33.282			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16 00	68.752	5.542	11.085	16.628	22.170	27.713	33.255		160	17°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.533						5	0.001	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.379							10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-					25	.028	.029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0		-			30	.040	.042
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					10.527	22.036					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								33.025			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					16.482						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	57.304		10.978	16.467						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 00	68.764	5.484	10.968	16.452	21.936	27.420	32.904		18°	19°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.957		21.915	27.394	32.872	c	0.001	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		5.473		16.420	21.894		32.840			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.408						15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	16.272	21.852	27.315				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					£1.030	27.200	J20/40			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,00		5.452			21.809	27.262	32.714		•~44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10.893	16.340						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					10.324						ų
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										20 ⁰	21°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 00	68.779	5.419	10.838	16.257	21.676	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.464	5.412	10.826	16.220	21.612	27 06-	22.478	5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					16.222	21.620	27.036				.000
40 45.858 5.396 10.791 16.187 21.582 26.978 32.373 25 .034 .035 50 57.322 5.390 10.779 16.169 21.558 26.948 32.338 30 .049 .051		34.394	5.401					32.408			.022
						21.582	26.978	32.373		.034	.035
21 00 68.787 5.384 10.768 16.151 21 525 26 010 22 202	50			10.779	10.109	21.558	20.948	32.338	30	.049	.051
3.5.7 5.7.7 2.3.35 20.9.79 32.303	21 00	68.787	5.384	10.768	16.151	21.535	26.919	32.303			

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 55860.

[Derivation of table explained on pp. liii-lvi.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		dis-	AB	EL.							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Latitude of parallel.	Meridional tances fro even degr parallels.	-				-	-	1	DEVELC	PED
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21°00′	68.787	5.384	10.768	16.151	21.535	26.919	32.303	Longit	210	22 ⁰
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	22.932	5.372	10.743	16.115	21.486	2 6.858	32.230		Inches	Inches.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.397					26.828		5'		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		45.803					26.767			.006	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									25	.035	.036
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						21.363			30	.051	.052
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.328			21.330					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			5.322	10.643							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				10.631		21.261	26.577				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23 00	68.803	5.309	1 0 .618	1 5.927	21.236	26.545	31.853		23°	24 ⁰
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.469	5.302	10.604	15.907	21.209	26.511	31.813			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.296				26.478		5	0.001	0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							26.445		IO		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									15	.014	.014
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	57.343	5.270	10.551		21.102	20.378	31.054			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	24 00	68.812	5.269	10.538	1 5.807	21.076	26.345	31.614			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		34.410									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 00	-		10.455	15.682	20.910	26.137	31.365		25°	26°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TT 472	5.220	,	15.661	20.881	26.101	31,322	, , , , , , , , , , , , , , , , , , ,	0.002	0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.415							15	.014	.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		45.886	5.199	10.397	15.596						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	57.35 ⁸	5.191	10.383	15.575	20.766	25.958	31.149			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 00	68.830	5.184	10.369	1 5.553	20.737	25.922	31.106			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.473		10.354	15.531		25.884				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.946	5.169	10.339	1 5.508						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								30.92/		27 ⁰	28°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 00		5.140	10.279	15.419	20.558	25.698	30.838		0.002	0.002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.475	5,1 22	10.264	15.206	20.528	25.650	30.701	10	.007	.007
30 34.424 5.116 10.233 15.349 20.466 25.582 30.699 25 .042 .043 40 45.899 5.109 10.218 15.326 20.435 25.544 30.653 30 .042 .043 50 57.374 5.101 10.202 15.303 20.404 25.505 30.607 30 .061 .063					15.373		25.621				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					15.349	20.466	2 5.582	30.699			
50 57.374 5.101 10.202 15.303 20.404 25.505 30.007 0	40	45.899	5.109	10.218	15.326						
28 00 68.849 5.093 10.187 15.280 20.374 25.467 30.560	50		5.101	10.202	15.303	20.404	25.505	30.607	5		-5
	28 00	68.849	5.093	10.187	1 5.280	20.374	25.467	30.560			

TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 553550.

[Derivation of table explained on pp. liii-lvi.]

	dis.	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridiooal di tances from even degree parallels.	5'	10'	15'	20'	25' longitude.	30' longitude.	1	RDINAT DEVELC PARALL	PED
	2-0-	longitude.	longitude.	longitude.	iongitude.					
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	28°	29°
28°00′	68.849	5.093	10.187	15.280	20.374	25.467	30.560	Lon		
10	11.476	5.085	10.171	15.256	20.342	25.427	30.513			
20	22.953	5.077	10.155	15.232	20.310	25.387	30.465 30.417		Inches.	Inches.
30	34.430	5.069	10.139	1 5.208	20.278	25.347 25.308	30.369	5	0.002	0.002
40	45.900	5.061	10.123	15.185 15.161	20.246 20.214	25.268	30.321	10	.007	.007
5°	57.383	5.054	10.107	13.101	20.214	23.200	30.321	15	.016	.016
	68 8 10	50.6	10.001	15.137	20.182	25.228	30.274	20	.028	.028
29 00	68.859	5.046	10.091	1 2 1 3/	20.102			25	.043	.044 .064
10	11.478	5.037	10.075	15.112	20.1 50	25.187	30.224	30		.004
20	22.957	5.029	10.058	15.087	20.117	25.146	30.175			
30	34.435	5.021	10.042	15.063	20.084	25.105	30.126	1		
40	45.913	5.013	10.025	1 5.038	20.051	25.064	30.076	1		
50	57.391	5.004	10.009	15.013	20.018	25.022	30.027			
30 00	68.870	4.996	9.993	14.989	19.985	24.981	29.978		 30°	31°
				- 1 - 6 -	10.047	24.020	29.927			
10	11.480	4.988	9.976	14.963	19.951 19.917	24.939 24.896	29.876	5	0.002	0.002
20	22.960	4.979	9.959	14.938	19.883	24.854	29.825	10	.007	.007
30	34.440	4.971 4.962	9.942 9.925	14.912	19.849	24.812	29.774	15	.016	.017
40	45.920 57.400	4.902	9.925	14.862	19.815	24.769	29.723	20	.029	.030
50		4-934		· · .				25	.045	.046
31 00	68.880	4.945	9.891	14.836	19.782	24.727	29.672	30	.065	.067
10	11.482	4.937	9.873	14.810	19.747	24.683	29.620			
20	22.964	4.928	9.856	14.784	19.712	24.640	29.568	1		
30	34.446	4.919	9.838	14.758	19.677	24.596	29.515	1		
40	45.927	4.910	9.821	14.731	19.642	24.552	29.463			
50	57.409	4.902	9.804	14.705	19.607	24.509	29.411		32°	33°
32 00	68.891	4.893	9.786	14.679	19.572	24.465	29.358			
10	11.484	4.884	9.768	14.652	19.536	24.420	29.305	5	0.002	0.002
20	22.967	4.875	9.750	14.625	19.500	24.376	29.251	10	.007	.008
30	34.451	4.866	9.732	14.598	19.465	24.331	29.197	15	.017	.017
40	45.934	4.857	9.714	14.572	19.429	24.286	29.143	20	.030	.031
50	57.418	4.848	9.696	14.545	19.393	24.241	29.089	25	.047	.048 .069
33 00	68.902	4.839	9.679	14.518	19.357	24.196	29.036	30	.008	.009
	11.8.	1 200	0.660	74.000	10 220	24 1 10	28.980	1		
10	11.485	4.830 4.821	9.660 9.642	14.490	19.320	24.150 24.104	28.925		1	
20	22.97 I 34.456	4.812	9.642	14.462	19.283	24.104	28.870			
30	45.942	4.802	9.623	14.435	19.240	24.050	28.814	<u> </u>		
40 50	45.942 57.427	4.502	9.586	14.407	19.173	23.966	28.759		34°	35°
34 00	68.913	4.784	9.568	14.352	19.136	23.920	28.704	5	0.002	0.002
10	11.487	4.77,4	9.549	14.323	19.098	23.872	28.647	10	.008	.008
20	22.975	4.765	9.530	14.295	19.060	23.825	28.590	15	.017	.018
30	34.462	4.755	9.511	14.267	19.022	23.778	28.533	20	.031	.031
40	45.949	4.746	9.492	14.238	18.984	23.730	28.476	25	.049	.049
50	57.437	4.737	9.473	14.210	18.946		28.420	30	.070	.071
35 00	68.924	4.727	9.454	14.181	18.908	23.636	28.363			
	1	· · · · · · · · · · · · · · · · · · ·		1		1	,	1	1	<u> </u>

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 333500

[Derivation of table explained on pp. liii-lvi.]

	e n dis-	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5 ['] longitude.	IO' longitude.	I 5' lougitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAI DEVELC PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	tude val.		
35°00′	68.924	4.727	9.454	14.181	18.908	23.636	28.363	Longitude interval.	35°	36°
10	11.489	4.717	9.435	14.152	18.870	23.587	28.305			
20	22.978	4.708	9.415	14.123	18.831	23.539	28.246 28.188		Inches.	Inches.
30 40	34.468 45.957	4.698 4.688	9.396	14.094 14.065	18.792 18.753	23.490 23.442	28.130	5	0.002	0.002
50	43.937 57.446	4.679	9·377 9·357	14.036	18.714	23.393	28.072	10	.008	.co8
	37.440	4.0/9	1257	14.030		-3.323	-0,0,2	15 20	.018	.018
36 00	68.935	4.669	9.338	14.007	18.676	23.345	28.014	25 30	.031 .049 .071	.032 .050 .072
10	11.491	4.659	9.318	I 3.977	18.636	23.295	27.954	50	.0/1	.0/2
20	22.983	4.649	9.298	13.947	18.596	23.245	27.894			
30	34.474	4.639	9.278	13.917	18.556	23.195	27.835			
40	45.965	4.629	9.258	13.887 13.858	18.517	23.146 23.096	27.775			
50	57.457	4.619	9.238		18.477		27.715			
37 00	68.948	4.609	9.219	1 3.828	18.437	23.046	27.656		37°	3 ^{8°}
IO	11.493	4.599 4.589	9.198	13:797	18.396	22.995	27.594			
20	22.986		9.178	13.767	18.356	22.944	27.533	5	0.002	0.002
30	34.480	4.579	9.157	13.736	18.315 18.274	22.894 22.843	27.472	10	.008	.008
40	45·973 57.466	4.568	9.137 9.117	13.706 13.675	18.274	22.792	27.411 27.350	15 20	.018	.018
50	37.400	4.558	9.11/	13.0/3	10.234	22.792	-/.330	25	.032 .050	.033 .051
38 00	68.959	4.548	9.096	13.645	18.193	22.741	27.289	30	.073	.073
10	11.495	4.538	9.076	13.613	18.151	22.689	27.227			
20	22.990	4.527	9.055	1 3.582	18.109	22.637	27.164			
30	34.485	4.517	9.034	13.551	18.068	22.585	27.102			
40	45.980	4.506	9.013	13.520	18.026	22.533 22.481	27.039			
50	57.475	4.496	8.992	1 3.488	17.984	22.481	26.977		39°	40°
39 00	68.970	4.486	8.971	13.457	17.943	22.429	26.914			
10	11.497	4.475	8.950	13.425	17.900	22.375	26.851	5	0.002	0.002
20	22.994	4.464	8.929	13.393	17.858	22.322	26.787	10	.008	.008
30	34-491	4.454	8.908	13.361	17.815	22.269	26.723	15	.018	.019
40	45.988	4.443	8.886	13.330	17.773	22.216	26.659	20 2 r	.033	.033
50	57.485	4.433	8.865	13.298	17.730	22.163	26.595	25 30	.051 .074	.052 .074
40 00	68.982	4.422	8.844	13.266	17.688	22.110	26. <u>53</u> 2	5-	.074	••/4
10	11.499	4.411	8.822	13.233	17.644	22.055	26.466			
20	22.998	4.400	8.800	13.201	17.601	22.00I	26.401			
30	34.497	4.389	8.779	13.168	17.557	21.947	26.336			
40	45.996	4.378	8.757	13.135	17.514	21.892	26.271		41°	42 ⁰
50	57.495	4.368	8.735	13.103	17.470	21.838	26.206		41 	<u> </u>
41 00	68.994	4.357	8.713	13.070	17.427	21.784	26.140	5 10	0.002 .008	0.002
IO	11.501	4.346	8.691	13.037	17.383	21.728	26.074	15	.000	.000
20	23.002	4.335	8.669	1 3.004	17.338	21.673 21.618	26.007	20	.033	.033
30	34.503	4.324	8.647	12.971	17.294		25.941	25	.052	.052
40	46.004	4.312	8.625	12.937	17.250	21.562	25.875 25.808	30	.075	.075
50	57.506	4.301	8.603	12.904	17.205	21.507				
42 00	69.007	4.290	8.581	12.871	17.161	21.451	25.742			

TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 33 3 65.

[Derivation of table explained on pp. liii-lvi.]

								-		
	is .	AE	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
4	Meridional dis taoces from even degree parallels.							01	DINAT	TROF
Latitude parallel.	els fr	1			1				DEVELO	
alle.	al o c ci	5	10'	15'	20'	25	30'		ARALL	
bati	fer	-				-	-	1		
		longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
								1	· · · ·	1
1	Inches,	Inches.	Inches.	Inches.	Inches,	Inches.	Inches.	-g-j		1
								E.	42 ⁰	43°
42°00′	69.007	4.290	8.581	12.871	17.161	21.451	25.742	Longitude interval.	4-	43
								Ъ		1
10	11.503	4.279	8.558	1 2.837	17.116	21.395	25.674			
20	23.006	4.268	8.535	12.803	17.071	21.338	25.606		Inches.	Inches.
30	34.510	4.256	8.513	12.769	17.025	21.282	25.538	5	0.002	0.002
40	46 .0 1 3	4.245	8.490	12.735	16.980	21.225	25.470	10	.008	.008
50	57.516	4.234	8.467	12.701	16.935	21.169	25.402	15	.019	.010
								20	.033	.033
43 00	69.019	4.222	8.445	12.667	16 .890	21.112	25.334	25	.052	.052
								30	.075	.075
10	11.505	4.211	8.422	12.633	16.844	21.054	25.265	50		/3
20	23.010	4.199	8.399	12.598	16.798	20.997	25.196			
30	34.515	4.188	8.376	12.564	16.751	20.939	25.127			
40	46.020	4.176	8.353	12.529	16.705	20.882	25.058			! !
50	57·525	4.165	8.330	12.494	16.659	20.824	24.989			
				_						
44 00	69.030	4.1 53	8.307	12.460	16.613	20.767	24.920		44 ⁰	45°
									44	43
10	11.507	4.142	8.283	12.425	16.566	20.708	24.849			
20	23.014	4.130	8.260	12.390	16.519	20.649	24.779	5	0.002	0.002
30	34.522	4.118	8.236	12.354	16.473	20.591	24.709	10	.008	.008
40	46.029	4.106	8.213	12.319	16.426	20.532	24.638	15	.019	.019
50	57.536	4.095	8.189	12.284	16.379	20.473	24.568	20	.034	.034
		_						25	.052	.053
45 00	69.043	4.083	8.166	12.249	16.332	20.415	24.498	30	.075	.076
			_					5- 1		
10	11.509	4.071	8.142	12.213	16.284	20.355	24.426			
20	23.018	4.059	8.118	12.177	16.236	20.295	24.354			
30	34.528	4.047	8.094	12.141	16.188	20.236	24.283			
40	46.037	4.035	8.070	12.105	16.141	20.176	24.21 I			
50	57.546	4.023	8.0 46	12.070	16.093	20.116	24.139			
16	(46°	47°
46 00	69.055	4.011	8.023	I 2.034	16.045	20.056	24.068		- T-	· · ·
			0							
10	11.511	3.999	7.998	11.997	I 5.997	19.996	23.995	5	0.002	0.002
20	23.023	3.987	7.974	11.961	1 5.948	19.935	23.922	IŌ	.008	.008
30	34.534	3.975	7.950	11.925	1 5.899	19.974	23.849	15	.019	.019
40	46.045	3.963	7.925	11.888	15.851	19.813	23.776	20	.034	.034
50	57.557	3.951	7.901	11.852	15.802	19.753	23.703	25	.053	.052
48	60-00							3ō	.076	.075
47 00	69.068	3.938	7.877	11.815	I 5.754	19.692	23.630		·	
			_ 0							
IO	11.513	3.926	7.852	11.778	I 5.704	19.630	23.556			
20	23.027	3.914	7.827	11.741	15.655	19.569	23.482			
30	34.540	3.901	7.803	11.704	15.000	19.507	23.408	[
40	46.053	3.889	7.778	11.667	15.556	19.445	23.334			
50	57.567	3.877	7.753	11.630	15.507	19.383	23.260		48°	49°
18 00	60.000	a 94 .						(li
48 00	69.080	3.864	7.729	11.593	I 5.457	19.322	23.186	_	0.002	0.002
1 10	11 616	28-2						5	.002	.002
10	11.516	3.852	7.704	11.555 11.518	I 5.407	19.259	23.111			
20 20	23.031	3.839	7.679	11.518	I 5-357	19.196	23.035	15	.019	.019
30	34.546	3.827	7.653 7.628	11.480	15.307	19.134	22.960	20	.033	.033
40 50	46.062	3.814		11.442	I 5.257	19.071	22.885	25	.052	.052
50	57.577	3.802	7.603	11.405	15.206	19.008	22.810	30	.075	.075
40.00	69.093	2 780	o							
49 00	09.093	3.789	7.578	11.367	15.156	18.945	22.734			
L										
								_		'I

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 55550.

[Derivation of table explained on pp. liü-lvi.]

	aip = %	AB	SCISSAS	EL.						
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5 lougitude.	• 10 ⁷ longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude,	I	RDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	49°	50 ⁰
49 ⁰ 00'	69.093	3.789	7.578	11.367	15.156	18.945	22.734	Long	12	5
10	11.517	3.776	7.553	11.329	15.105	18.882	22.658			
20	23.035	3.764	7.527	11.291	15.054	18.818 18.754	22.581		Inches.	Inches.
30	34.552	3.751	7.502	11.253	15.003	18.690	22.505	5	0.002	0.002
40	46.070	3.738	7.476	11.214 11.176	14.952	18.627	22.429	IÕ	.008	.008
50	57•5 ⁸ 7	3.725	7.451	11.170	14.901	10.02/	22.352	15	.019	.019
50 00	69.105	3.713	7.425	11.138	14.850	18.563	22.276	20 25	.033 .052	.033 .052
10	11.520	3.700	7.399	11.099	14.799	18.499	22.198	30	.075	·075
20	23.039	3.687	7.374	11.000	14.747	18.434	22.121			
30	34.558	3.674	7.348	11.021	14.695	18.369	22.043			
40	46.078	3.661	7.322	10.983	14.644	18.305	21.965			
50	57.598	3.648	7.296	10.944	14.592	18.240	21.888			
57 00	б9.117	3.635	7.270	10.905	14.540	18.176	21.811		51°	52°
10	11.521	3.622	7.244	10.866	14.488	18.110	21.732	<u> </u>		
20	23.043	3.609	7.218	10.827	14.436	18.045	21.653	_	0.002	0.002
30	34.564	3.596	7.191	10.787	14.383	17.979	21.574	5 10	.002	.008
40	46.086	3.583	7.165	10.748	14.330		21.496	15	.019	.000
50	57.607	3.570	7.139	10.709	14.278	17.913 17.848	21.417	20	.033	.033
52 00	69.128	3.556	7.113	10.669	14.226	17.782	21.338	25 30	.051 .074	.051 .073
			7.086	10.629	1 . 172	17.716	27.250	ľ		
10	11.523	3.543	7.000	10.589	14.172 14.119	17.649	21.259			
20	23.047	3.530		10.550	14.119	17.583	21.099			
30	34.570 46.094	3.516	7.033	10.510	14.013	17.516	21.099			
40 50	57.617	3.503	6.980	10.470	13.960	17.450	20.939			
	5/101/	5.490	0.900		-3-90-				53°	54°
53 00	69.140	3.477	6.953	10.430	13.906	17.383	20.860			
IO	11.525	3.463	6.926	10.389	13.852	17.316	20.779	5	0.002	0.002
20	23.051	3.450	6.899	10.349	13.798	17.248	20.698	IŌ	.008	.008
30	34.576	3.436	6.872	10.309	13.745	17.181	20.617	15	.018	.018
40	46.102	3.423	6.845	10.268	1 3.691	17.114	20.536	20	.032	.032
50	57.627	3.409	6.818	10.228	13.637	17.046	20.455	25	.050 .073	.050 .072
54 00	69.1 52	3.396	6.791	10.187	1 3.583	16.979	20.374	30	.073	.5/2
10	11.527	3.382	6.764	10.146	13.528	16.910	20.292	Į		
20	23.055	3.368	6.7.37	10.105	13.474	16.842	20.210			
30	34.582	3.355	6.709	10.064	13.419	16.774	20.128			
40	46.109	3.341	6.682	10.023	13.364	16.706	20.047			- (0
50	57.636	3.327	6.655	9.982	13.310	16.637	19.964		55°	56°
55 00	69.164	3.314	6.628	9.941	13.255	16.569	19.883	5 10	0.002	0.002 .008
10	11.529	3.300	6.600	9.900	13.200	16.500	19.800		.008	.008
20	23.059	3.286	6.572	9.859	13.145	16.431	19.717	15 20	.032	.031
30	34.588	3.272	6.545	9.817	13.089	16.362	19.634	25	.032	.049
40	46.117	3.258	6.517	9.776	13.034	16.293	19.551		.049 .071	.049
50	57.646	3.245	6.489	9.734	12.979	16.224	19.468	30	.5/1	
56 00	69.176	3.231	6.462	9.693	12.924	16.155	19.385			
L		1	1		,		•			

TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 5850.

[Derivation of table explained on pp. liii-lvi.]

٦

;

	dis-	AB	SCISSAS	OF DEV	EL.					
Latitude of parallel.	Meridiooal dis tances from even degree parallels.	5 [°] longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	Ľ	DINATI DEVELO ARALLI	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	56°	57°
56°00′	69.176	3.231	6.462	9.693	12.924	16.155	19.385	Long		5,
10	11.531	3.217	6.434	9.651	12.868 12.812	16.085 16.015	19.301 19.217			<u> </u>
20	23.063	3.203 3.189	6.406 6.378	9.609 9.567	12.756	15.945	19.134	5	Inches.	Inches.
30	34·594 46.125	3.175	6.350	9.525	12.700	15.875	19.050	10	0.002	0.002
40 50	57.656	3.161	6.322	9.483	12.644	15.805	18.966	15	.008	.008
J	57-5-	J.==-		1.5				20	.031	.031
57 00	69.188	3.147	6.294	9.44I	1 2.588	I 5.735	18.882	25	.049	.048
l "				_			-9	30	.070	.069
10	11.533	3.133	6.266	9.398	12.531	15.664	18.797 18.712			-
20	23.066	3.119	6.237	9.356	12.475	15.594	18.627			
30	34.599	3.104	6.209 6.181	9.314	12.418 12.362	15.523	18.542			·
40	46.132	3.090	6.152	9.27 I 9.229	12.305	15.452 15.381	18.457			
50	37.000	3.076	0.1 32	9.229		- 3.34-				
58 00	69.199	3.062	6.124	9.186	12.248	15.311	18.373	ļ	5 ^{8°}	59°
10	11.535	3.048	6.096	9.143	12.191	15.239	18.287			
20	23.070	3.034	6.067	9.101	12.134	15.168	18.201	5	0.002	0.002
30	34.605	3.019	6.038	9.058	12.077	1 5.096	18.115	10	.008	.007
40	46.140	3.005	6.010	9.015	12.020	15.025	18.029	15	.017	.017
50	57.675	2.991	5.981	8.972	11.962	14.953	17.944	20	.030	.030
59 00	69.210	2.976	5.953	8.929	11.905	14.882	17.858	25 30	.047 .068	.046 .067
10	11.537	2.962	5.924	8.885	11.847	14.809	17.771	1		
20	23.074	2.947	5.895	8.842	11.790	14.737	17.684			
30	34.610	2.933	5.895 5.866	8.799	11.732	14.665	17.597			
40	46.147	2.918	5.837	8.755	11.674	14.592	17.510			
50	57.684	2.904	5.808	8.712	11.616	14.520	17.424			
60 00	69.221	2.890	5.779	8.669	11.558	14.448	17.337		60°	61°
	11 530	2.875	5 7 50	8.625	11.500	14 275	17 240	5	0.002	0.002
10 20	23.077	2.860	5.750 5.721	8.581	11.500	14.375 14.302	17.249	10	.007	.007
30	34.616	2.846	5.691	8.537	11.383	14.229	17.074	15	.016	.016
40	46.154	2.831	5.662	8.493	11.324	14.156	16.987	20	.029	.029
50	57.693	2.816	5.633	8.4 50	11.266	14.083	16.899	25	.045	.045
		-			-	}		30	.065	.064
61 00	69.232	2.802	5.604	8.406	11.208	14.010	16.811			
10	11.540	2.787	5.574	8.361	11.148	1 3.936	16.723			
20	23.081	2.772	5.545	8.317	11.090	13.862	16.634			
30	34.621	2.758	5.115	8.273	11.030	13.788	16.546	-	-	·[
40	46.162	2.743	5.486 5.456	8.229 8.184	10.972	13.715	16.457		02 ⁰	63°
50 62 00	69.242		5.427	8.140	10.912	13.567	16.280			
		-	5.44/	0.140	10.034	-3.30/	10.200	5	0.002	0.002
10	11.542	2.699	5.397	8.096	10.794	13.493 13.418	16.191	10	.007	.007 .015
20	23.084	2.684	5.367	8.051	10.734	1 3.418	16.102	20	.028	015
30	34.620	2.669	5.337	8.006	10.675	13.344	16.012	25	.044	.043
40	46.168	2.654	5.308	7.961	10.615	13.269	15.923	30	.063	.061
50	57.710	2.639	5.278	7.917	10.556	13.195	1 5.833	Ĩ	1	
63 00	69.253	2.624	5.248	7.872	10.496	1 3.1 20	15.744			
L'										

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{83380}$.

[Derivation of table explained on pp. liii-lvi.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		dis- ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Latitude of parallel.	Meridional di tances from even degree parallels.	-				-		I	DEVELO	PED
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Inches.	Inches.	Inches.		Inches.	Inches.	Inches.	tude val.	6-9	6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63°00′	69.253	•	- ·	7.872	10.496	13.120		Longi	03-	04*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							12.970			Inches.	Inches.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.158	7.737				5	0.002	0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.007	.007
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	°⊂	3/./10	2.349	5.090	7.047	10.190	12.745	13.293			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	64 00	69.262	2.534	5.068	7.602	10.136	12.670	15.203	25	.043	.041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.545	2.519	5.037	7.556	10.075	12.594	15.112	30	.001	.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23.001	2.504		7.511			15.022			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	34.636			7.465	9.954		14.930			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.947		9.893	12.367			1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	57.727	2.458	4.916	7.374	9.832	12.291	I4.749			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65 00	69.272	2.443	4.886	7.329	9.772	12.215	14.658		65°	66°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	11.547	2.428	4.855	7.283	0.711	12.130	14.566			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			4.825		0.650					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30					9.588	11.986				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							11.000				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	57.735	2.366	4.733		9.466	11.833	14.199			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 00	69.282	2.351	4.702	7.054	9.405	11.756	14.107			.039 .056
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.548	2.226	1.672	7.007	0.343	11.670	14.015			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6.061	0.282					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6.915						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					6.869			13.738			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					6.823			13.645		67°	68°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67 00	69.291	2.259	4.518	6.776	9.035	1 1.294	13.553		0.001	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.550	2.243	4.487	6.730	8.973	11.217	13.460			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		2.228		6.683	8.911			15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				6.637		11.061	13.273		.024	.023
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.787					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50	57.750	2.181	4.362	6.543	8.724	10.906	13.087	30	.054	.053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 oo	69.300	2.166	4.33I	6.497	8.662	10.828	12.994			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.552	2.1 50	4.300	6.450	8.600	10.750	12.900			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.475		12.712		6-9	700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		2.103			8.412	10.516			09-	70-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	57.758	2.088	4.175	6.263	8.350	10.438	12.525			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69 00		2.072		6.216	8.288	10.360	12.431	10	.006	.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	11.553	2.056	4.112	6.169	8.225	10.281	12.337			
30 34.659 2.025 4.049 6.074 8.099 10.124 12.148 25 .035 .034 40 46.212 2.009 4.018 6.027 8.036 10.045 12.054 30 .051 .049 50 57.764 1.993 3.986 5.980 7.973 9.966 11.959 .051 .049		23.106									
40 46.212 2.009 4.018 6.027 8.036 10.045 12.054 50 10.51 10.045 50 57.764 1.993 3.986 5.980 7.973 9.966 11.959											
50 57.764 I.993 3.986 5.980 7.973 9.966 II.959				4.018	6.027				1 ³⁰		••49
				3.986	5.980						
	-	_					9.888	11.865			

SMITHSONIAN TABLES.

١

TABLE 22.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 35 380

[Derivation of table explained on p. lüi-lvi.]

	dis- ce	AB	SCISSAS	EL.						
Latitude of parailel.	Meridionel dis tances from even degree parallels.	5' longitude.	10' longitude.	I 5' iongitude.	20 ' longitude.	25' longitude.	30' longitude.	D	DINAT EVELO ARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
70 ⁰ 00′	69.317	1.977	3.955	5.932	7.910	9.888	11.865	Longitude interval.	70 ⁰	71°
10 20 30 40	11.554 23.109 34.663 46.217	1.962 1.946 1.930 1.914	3.923 3.892 3.860 3.828	5.885 5.837 5.790 5.742	7.846 7.783 7.720 7.656	9.808 9.729 9.650 9.571	11.770 11.675 11.579 11.485	5' 10	Inches. 0.001 .005	Inches. 0.001 .005
50 71 00	57.772 69.326	1.898	3.796 3.765	5.695 5.647	7·593 7·530	9.491 9.412	11.389	15 20	.012 .022	.012 .021
10 20 30 40 50	11.556 23.111 34.667 46.222 57.778	1.866 1.850 1.835 1.819 1.803	3.733 3.701 3.669 3.637 3.605	5.600 5.552 5.504 5.456 5.408	7.466 7.402 7.338 7.275 7.211	9.333 9.253 9.173 9.094 9.014	11.199 11.103 11.008 10.912 10.816	25 30	.034 .049	.032 .047
72 00	69.334	1.787	3.574	5.360	7.147	8.934	10.721		72 ⁰	73°
10 20 30 40 50	11.557 23.114 34.670 46.227 57.784	1.771 1.755 1.739 1.723 1.707	3.542 3.509 3.477 3.445 3.413	5.312 5.264 5.216 5.168 5.120	7.083 7.019 6.955 6.891 6.826	8.854 8.774 8.694 8.614 8.533	10.625 10.528 10.432 10.336 10.240	5 10 15 20	0.00I .005 .0I I .020	0.001 .005 .011 .019
73 00	69.341	1.691	3.381	5.072	6.762	8.453	10.144	25 30	.031 .044	.029 .042
10 20 30 40 50	11.558 23.116 34.674 46.232 57.790	1.674 1.658 1.642 1.626 1.610	3·349 3.317 3.284 3.252 3.220	5.024 4.975 4.927 4.878 4.830	6.698 6.634 6.569 6.504 6.440	8.373 8.292 8.211 8.131 8.050	10.047 9.950 9.853 9.757 9.660			
74 00	69.348	1.594	3.188	4.782	6.376	7.970	9.563		74°	75°
10 20 30 40 50	11.559 23.118 34.677 46.236 57.796	1.578 1.562 1.545 1.529 1.513	3.155 3.123 3.091 3.058 3.026	4.733 4.685 4.636 4.587 4.539	6.311 6.246 6.181 6.116 6.052	7.889 7.808 7.727 7.645 7.565	9.466 9.369 9.272 9.175 9.077	5 10 15 20 25 30	0.001 .004 .010 .018 .028 .040	0.001 .004 .009 .017 .026 .038
75 00	69.355	1.497	2.993	4.490	5.987	7.484	8.980	55		.030
10 20 30 40	11.560 23.120 34.681 46.241	1.480 1.464 1.448 1.432	2.961 2.928 2.896 2.863	4.441 4.392 4.344 4.295	5.922 5.856 5.792 5.726	7.402 7.321 7.240 7.158	8.882 8.785 8.687 8.590			
50 76 00	57.801 60.261	1.415	2.831	4.246	5.661	7.077	8.492		76°	77°
70 00 IO	69.361 11.561	1.399 1.383	2.798 2.765	4.197 4.148	5.596 5.530	6.995 6.913	8.394 8.206	5 10	0.රථI .004	0.001 .004
20 30 40 50	23.122 34.683 46.244 57.806	1.366 1.350 1.334 1.317	2.733 2.700 2.667 2.634	4.099 4.050 4.001 3.9 5 2	5.465 5.400 5.334 5.269	6.832 6.750 6.668 6.586	8.296 8.198 8.099 8.002 7.903	15 20 25 30	.004 .009 .016 .025 .036	.004 .015 .023 .033
77 00	69.367	1.301	2.602	3.903	5.204	6.505	7.805			

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 53 \$ 800.

[Derivation of table explained on p. liii-lvi.]

of	l dis- om ree	AI	BSCISSAS	OF DEV	ELOPED	PARALE	:L.			
Latitude c parallel.	Meridional di tances from even degree parallels,	5 ['] longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAT DEVELO PARALL	PED
77 ⁰ 00'	Inches. 69.367	Inches. 1.301	Inches. 2.602	Inches. 3.903	Inches. 5.204	Inches. 6.505	Inches. 7.805	Longitude interval.	77°	78º
20 30 40 50	11.562 23.124 34.686 46.248 57.810	1.284 1.268 1.252 1.235 1.219	2.569 2.536 2.503 2.470 2.438	3.854 3.804 3.755 3.706 3.656	5.138 5.072 5.006 4.941 4.875	6.423 6.341 6.258 6.176 6.094	7.707 7.609 7.510 7.411 7.313	5 10 15	Inches. 0.001 .004 .008	Inches. 0.001 .003 .008
78 00 10 20	69.373 11.563 23.126	1.202 1.186 1.169	2.405 2.372 2.339	3.607 3.558 3.508	4.810 4.744 4.678	6.012 5.930 5.847	7.214 7.115 7.016	20 25 30	.015 .023 .033	.014 .021 .031
30 40 50	34.689 46.252 57.814	1.153 1.136 1.120	2.306 2.273 2.240	3.459 3.410 3.360	4.612 4.546 4.480	5.765 5.683 5.600	6.918 6.819 6.720			
79 00	69.377	1.104	2.207	3.311	4.414	5.518	6.621		79°	80°
10 20 30 40 . 50	11.564 23.127 34.691 46.255 57.818	1.087 1.070 1.054 1.037 1.021	2.174 2.141 2.108 2.075 2.042	3.261 3.211 3.162 3.112 3.062	4.348 4.282 4.216 4.150 4.083	5·435 5·352 5·270 5·187 5·104	6.522 6.422 6.323 6.224 6.125	5 10 15 20 25 30	0.001 .003 .007 .013 .020 .028	0.001 .003 .006 .011 .018 .026
80 00	69.382	1.004	2.009	3.013	4.017	5.022	6.026	J ⁰	.028	.020

SMITHSONIAN TABLES.

121

TABLE 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 200000.

[Derivation of table explained on pp. liii-lvi.]

			co	-ORDII	NATÉ	SOF	DEVI	ELOPEI	D PA	RALLE	EL FO	DR —	
ude of illel.	Meridional dis- tances from even degree parallels.	10′ long	itude.	20/ long	itude.	30' long	itude.	40' long	itude.	50′ long	itude.	1° long	gitude.
Latitude of parallel.	Meri tanc ever para	x	у	x	у	x	у	x	у	x	у	x	У
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
0 ⁰ 00' 10		92.8 92.8	.0 .0	185.5 185.5	.0. 0.	278.3 278.3	.0 .0	371.1 371.1		463.8 463.8	.0. 0.	556.6 556.6	.0 .0
20	184.3	92.8	.0	185.5	.0	278.3	.0	371.1	.0	463.8	.0	556.6	.0
30 40	276.4 368.6	92.8 92.8	0. 0.	185.5 185.5	0. 0.	278.3 278.3	o	371.0 371.0	.0 .0	463.8 463.8	.0. 0.	556.6 556.6	.0. 0.
50	460.7	92.8	.0	185.5	.0	278.3	.0	371.0	.0	463.7	.0	556.5	۰.
I 00 10		92.8	.0	185.5	.0	278.3	.0	371.0	.0	463.7	I.	556.5	.1
20	92.1 184.3	92.7 92.7	0. 0.	185.5 185.5	0. 0.	278.2 278.2	0. 0.	37 I.O 37 I.O	0. 0.	463.7 463.7	г. г.	5 56.4 5 56.4	л. л.
30	276.4	92.7	.0	185.5	.0	278.2	.0	370.9	.0	463.7	.1	556.4	۰.1
40 50	368.6 460.7	92.7 92.7	0. 0.	185.4 185.4	0. 0.	278.2 278.2	0. 0.	370.9 370.9	0. 1.	463.6 463.6	1. .1	556.3 556.3	.1 .2
2 00		92.7	.0	185.4	.0	278.1	.0	370.8	.1	463.6	.1	556.3	.2
10 20	92.1 184.3	92.7 92.7	0. 0.	185.4 185.4	0. 0.	278.1 278.1	.0. .0	370.8 370.8	л. л.	463.5	.I .I	556.2 556.1	.2 .2
30	276.4	92.7	.0	185.3	.0	278.0	.0	370.7	.I	463.4	.1	556.0	.2
40 50	368.6 460.7	92.7 92.7	0. 0.	185.3 185.3	0. 0.	278.0 278.0	.0. 1.	370.6 370.6	.1 .1	463.3 463.2	.2 .2	556.0 555.9	.2 .2
3 00		92.6	.0	185.3	.0	277.9	л.	370.6	.1	463.2	.2	555.8	.2
10 20	92.1 184.3	92.6 92.6	.0	185.2	.0	277.9	.I	370.5	.ι	463.1	.2	555.7	•3 •3
20 30	276.4	92.6	0. 0.	185.2 185.2	.0. .0.	277.8 277.8	1. 1.	370.4 370.4	.1 .1	463.0 463.0	.2 .2	555-7 555-5	·3 .3
40 50	368.6 460.7	92.6 92.6	.0	185.1	.0	277.7	.r	370.3	.1	462.8	.2	555.4	.3 .3
-	400.7	-	.0	185.1	.0	277.7	.1	370.2	.1	462.8	.z	555.4	•3
4 00 10		92.5 92.5	0. 0.	185.1 185.0	0. 0.	277.6 277.6	л. л.	370.2 370.1	.2 .2	462.7 462.6	.2 .2	555.2 555.1	•3
20	184.3	92.5	.0	185.0	.0	277.5	.1	370.0	.2	462.5	.2	555.0	.3 .3
30 40	276.4 368.6	92.5 92.5	.0. .0	185.0 184.9	.0 .0	277.4 277.4	.1 .1	369.9 369.8	.2	462.4	.2	554.9 554.8	.3 .4
50	460.7	92.4	.0	184.9	.0	277.3	.1	369.8	.2	462.2	.3 .3	554.6 554.6	•4 •4
5 00 10		92.4	.0	184.8 184.8	.0	277.3	.1	369.7	.2	462.1	.3	554.5	•4
20	184.3	92.4 92.4	.0 .0	184.7	.I .1	277.2 277.I	л. л.	369.6 369.5	.2 .2	462.0 461.8	·3 ·3	554·3 554·2	•4 •4
30	276.4 368.6	92.3	.0	184.7	.1	277.0	.ι	369.4	.2	461.7	.3 .3 .3	554.0	-4
40 50	460.7	92.3 92.3	.0 .0	184.6 184.6	.1 .1	276.9 276.9	.1 .1	369.2 369.2	.2 .2	461.6 461.4	·3 ·3	553-9 553-7	•5 •5
6 00		92.3	.0	184.5	.ı	276.8	л.	369.0	.2	461.3	.4	553.6	
10 20	92.2 184.3	92.2 92.2	0. 0.	184.5 184.4	1. .1	276.7 276.6	.1 .1	368.9 368.8	.2 .2	461.2	•4	553.4	いいいい
30	276.4	92.2	.0	184.3	.I	276.5	.I	368.7	.2	461.0 460.8	•4 •4	553.2 553.0	·5 ·5
40 50	368.6 460.7	92.1 92.1	.0. 0.	184.3 184.2	.I .I	276.4 276.3	л. л.	368.6 368.4	.2 .2	460.7 460.6	-4	552.8	.6 .6
7 00		92.1	.0	184.2	.1	276.2	.1	368.3			•4	552.7	
10	92.2	92.0	.0	184.1	.1	276.1	.1	368.2	·3 ·3	460.4 460.2	·4 ·4	552.5 552.2	.6 .6
20 30	184.3 276.4	92.0 92.0	0. 0.	184.0 184.0	.I .I	276.0	.1 .1	368.0	•3	460.0	•4	552.1	.6
40	368.6	<u>9</u> 1.9	.0	183.0	.1	27 5.9 27 5.8	.1	367.9 367.8	·3 ·3 ·3	459.9	·4 ·4	551.9 551.6	.6 .6
50	460.7	91.9	.0	183.8	.1	27 5.7	.ı	367.6	٠š	459-5	•5	.551.4	.0 .7
8 00	•••••	91.9	.u	183.7	.1	275.6	.2	367.5	•3	459.4	•5	551.2	•7
MITHSONIAN	TABLES									1			

TABLE 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 200000

[Derivation of table explained on pp. liii-lvi.]

	e lis-		co	-ORDI	NATI	ES OF	DEV	ELOPE	D PA	RALLI	EL F	0 R —	
Latítude of parallel.	Meridional dis- tances from even degree parallels.	10′ long	itude.	20' long	itude.	30' loug	itude.	40′ long	itude.	50′ long	itude.	1 ⁰ lon	gitude.
Lat	Me tai eva		у	x	у	x	у	x	У	x	у	*	у
8°00'	mm.	<i>mm</i> .	<i>mm</i> . .0	<i>mm</i> . 183.7	mm.	mm.	mm.	mm.	mm.	mm.	mm.	<i>mm</i> .	mm.
10	92.2	91.9 91.8	.0	183.7	1. 1.	27 5.6 27 5.5	.2 .2	367.5 367.3	·3 ·3	459·4 459·2	·5 ·5	551.2 551.0	·7 ·7
20 30	184.3 276.5	91.8 91.8	0. 0.	183.6 183.5	л. л.	27 5.4 27 5.2	.2	367.2 367.0	·3 ·3	459-0 458.8	•5 •5	550.7 550.5	·7 ·7
40	368.6	91.7	.0	183.4	.1	27 5.1	.2	366.8	.3	458.6	.5	550.3	.7
50	460.8	91.7	.0	183.3	I.	275.0	.2	366.7	•3	458.4	•5	550.0	•7
9 00		91.6	.0	183.3	л.	274.9	.2	366.5	•3	458.2	•5	549.8	.8
10	92.2 184.3	91.6 91.5	0. 0.	183.2 183.1	I I.	274.8 274.6	.2	366.4	·3 ·3	458.0	·5	549·5 549·2	.8 .8
30	276.5	91.5	.0	183.0	.I	274.5	.2	366.0	•3	457-5	.5 .6	549.0	.8
40 50	368.6 460.8	91.5 91.4	0. 0.	182.9	I. I.	274.4	.2 .2	365.8 365.6	•4	457·3	.0 .6	548.8 548.5	.8 .8
10 00	1	91.4	.0	182.7	.1	274.1	.2	365.5	.4	456.8	.6	548.2	.8
10	92.2	91.3	.0	182.6	ı.	274.0	.2	365.3	.4	456.6	.6	547.9	.8
20 30	184.3	91.3 91.2	0. 0.	182.5	I. I.	273.8	.2	365.1	•4	456.4 456.1	.6 .6	547.6 547.3	.9 .9
40	368.7	91.2	.0	182.3	л.	273.5	.2	364.7	•4	455.9	.6	547.0	.9
50	460.8	91.1	0.	182.2	I.	27 3.4	.2	364.5	•4	455.6	.6	546.7	-9
11 00 10	92.2	91.1	.0. .0	182.1 182.0	1. 1.	273.2	.z	364.3	-4	455.4	.6 .6	546.4 546.1	.9 .9
20	184.3	91.0 91.0	.0	181.9	I.	27 3.1	.2	363.8	•4	455.1	.6	545.8	.9
30	276.5	90.9	0. 0.	181.8	I. I.	272.7	.2	363.6	.4	454.6	·7	545.5	.9 1.0
40 50	460.8	90.9 90.8	0.	181.6	1.	272.6	.2	363.4 363.2	·4 ·4	454·3	·7 ·7	545.2 544.8	1.0
12 00		90.8	.0	181.5	л.	272.2	.2	363.0	.4	453.8	.7	544.5	1.0
10	92.2	90.7	.0	181.4	л.	27 2.1	.2	362.8	•4	453.4	.7	544.1	1.0
20 30	184.4	90.6 90.6	0. 0.	181.3	1. .1	271.9	.2	362.5	·4	453.2	·7 ·7	543.8 543.4	1.0 1.0
40	368.7	90.5	.0	181.0	.I	271.6	.3	362.1	•4	4 52.6	.7	543.1	1.0
50	460.9	90.5	0.	180.9	I.	271.4	.3	361.8	•5	452.3	•7	542.8	1.1
13 00 10	92.2	90.4 90.3	0. 0.	180.8	1. I.	271.2	·3 ·3	361.6 361.4	·5 ·5	452.0	•7	542.4 542.0	1.I 1.I
20	184.4	90.3	.0	180.6		270.8	•3	361.1	.5	451.4	.7	541.7	1.1
30 40	276.6 368.8	90.2 90.2	0. 0.	180.4	1. 1.	270.6	.3	360.8	•5 •5 •5	451.0	.8 .8	541.3 540.9	I.I I.I
50	461.0	90.1	.0	180.2		270.3	·3 ·3	360.4	.5	450.4	.8	540.5	1.1
14 00		90.0	.0	180.1	.I	270.1	.3	360.1	.5	450.2	.8	540.2	1.1
10	92.2	90.0	0.	179.9	1.	269.9	.3	359.8	·5	449.8	.8 .8	539.8	1.2 1.2
20 30	184.4 276.6	89.9 89.8	0. 0.	179.8	1. 1.	269.7 269.5	·3 ·3	359.6	·5 ·5 ·5	449.5	.8	539-4 539-0	1.2
40	368.8	89.8	0.	179.5	1.	269.3	•3	359.0	.5	448.8 448.5	.8 .8	538.6 538.2	I.2
50	461.0	89.7	0.	179.4	1.	269.1	.3	358.8	.5				1.2
15 00 10	92.2	89.6 89.6	0. 0.	179.3 179.1	I. I.	268.9	·3 ·3	358.5 358.2	•5	448.2	.8	537.8 537.4	I.2 I.2
20	184.4	89.5	.0	179.0	.I	268.5	.3	358.0	0.	447-4	.8	536.9	1.2
30	276.6 368.8	89.4 89.3	0. 0.	178.8	1. 1.	268.3 268.0	•3	357·7 357·4	.6 .6	447.I 446.7	.9 .9	536.5 536.0	1.2 1.3
40 50	461.0	89.3	.0	178.5	1. I.	200.0	·3 ·3	357.1	.6	440.7		535.6	1.3
16 00	 	89.2	.0	178.4	л.	267.6	.3	356.8	.6	446.0	.9	535.2	1.3
L	<u> </u>		1		1						<u> </u>	1	

TABLE 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2000000

[Derivation of table explained on pp. liii-lvi.]

	, a		сс	-ORDI	NAT	ES OF	DEV	ELOPE	D PA	RALL	EL F	or —	
ude of allel.	Meridional dis- tauces from even degree parallels.	10 [/] long	itude.	20′ long	itude.	30' long	itude.	40′ long	itude.	50' long	gitude.	1º lonj	gitude.
Latitude o	Meri tauc even para	x	у	x	у	x	У	×	У	x	у	x	у
16 ⁰ 00' 10 20 30 40 50'	<i>mm.</i> 92.2 184.4 276.6 368.8 461.0	<i>mm.</i> 89.2 89.1 89.0 89.0 88.9 88.8	mm. .0 .0 .0 .0 .0 .0	<i>mm</i> . 178.4 178.2 178.1 177.9 177.8 177.6	mm. .1 .1 .1 .1 .1 .1	<i>mm.</i> 267.6 267.4 267.2 266.9 266.7 266.5	mm. .3 .3 .3 .3 .3 .3 .3	<i>mm.</i> 356.8 356.5 356.2 355.9 355.6 355.3	mm. .6 .6 .6 .6 .6 .6	<i>mm.</i> 446.0 445.6 445.2 444.8 444.4 444.1	mm. .9 .9 .9 .9 .9 .9	<i>mm.</i> 535.2 534.7 534.3 533.8 533.3 532.9	mm 1.3 1.3 1.3 1.3 1.3 1.4
17 00 10 20 30 40 50	92.2 184.4 276.7 368.9 461.1	88.7 88.7 88.6 88.5 88.4 88.3	òòòòòò	177.5 177.3 177.2 177.0 176.8 176.7	.2 .2 .2 .2 .2 .2	266.2 265.0 265.7 265.5 265.2 265.2	;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	355.0 354.6 354.3 354.0 353.6 353.3	.6 .6 .6 .6 .6	443.7 443.3 442.9 442.5 442.0 441.6	.9 .9 1.0 1.0 1.0 1.0	532.4 532.0 531.5 531.0 530.5 530.0	1.4 1.4 1.4 1.4 1.4 1.4
18 00 10 20 30 40 50	92.2 184.5 276.7 368.9 461.2	88.3 88.2 88.1 88.0 87.9 87.8	° ° ° ° °	176.5 176.3 176.2 176.0 175.8 175.6	.2 .2 .2 .2 .2 .2 .2	264.8 264.5 264.2 264.0 263.7 263.5	.4 .4 .4 .4 .4 .4	353.0 352.6 352.3 352.0 351.6 351.3	.6 .6 .6 .6 .6 .7	441.2 440.8 440.4 440.0 439.6 439.1	1.0 1.0 1.0 1.0 1.0 1.0	529.5 529.0 528.5 528.0 527.5 526.9	1.4 1.4 1.5 1.5 1.5 1.5
19 00 10 20 30 40 50	92.2 184.5 276.7 369.0 461.2	87.7 87.6 87.6 87.5 87.4 87.3	ò ò ò ò ò	175.5 175.3 175.1 174.9 174.8 174.6		263.2 263.0 262.7 262.4 262.1 261.9	·4 ·4 ·4 ·4 ·4 ·4	351.0 350.6 350.2 349.9 349.5 349.2	·7 ·7 ·7 ·7 ·7 ·7	438.7 438.2 437.8 437.4 436.9 436.4	I.0 I.0 I.1 I.1 I.1 I.1	526.4 525.9 525.4 524.8 524.3 523.7	1.5 1.5 1.5 1.5 1.5 1.6
20 00 10 20 30 40 50	92.2 184.5 276.8 369.0 461.2	87.2 87.1 87.0 86.9 86.8 86.7	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	174.4 174.2 174.0 173.8 173.7 173.5		261.6 261.3 261.0 260.8 260.5 260.2	.4 .4 .4 .4 .4 .4	348.8 348.4 348.0 347.7 347.3 346.9	·7 ·7 ·7 ·7 ·7 ·7	436.0 435.6 435.0 434.6 434.2 433.6	I.I I.I I.I I.I I.I I.I I.I	523.2 522.7 522.1 521.5 521.0 520.4	1.6 1.6 1.6 1.6 1.6 1.6
21 00 10 20 30 40 50	92.3 184.5 276.8 369.0 461.3	86.6 86.5 86.4 86.3 86.2 86.1	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	173.3 173.1 172.9 172.7 172.5 172.3	 	259.9 259.6 259.3 259.0 258.8 258.4	.4 .4 .4 .4 .4 .4	346.6 346.2 345.8 345.4 345.0 344.6	·7 ·7 ·7 ·7 ·7 ·7	433.2 432.7 432.2 431.7 431.2 430.8	I.I I.I I.1 I.2 I.2 I.2 I.2	519.8 519.2 518.6 518.0 517.5 516.9	1.6 1.6 1.7 1.7 1.7
22 00 10 20 30 40 50	92.3 184.5 276.8 369.1 461.4	86.0 85.9 85.8 85.7 85.6 85.5	ö ö ö ö ö	172.1 171.9 171.7 171.5 171.3 171.1	.2 .2 .2 .2 .2 .2 .2	258.2 257.8 257.6 257.2 256.9 256.6	.4 .4 .4 .4 .4	344.2 343.8 343.4 343.0 342.6 342.2	.7 .8 .8 .8 .8 .8	430.2 429.8 429.2 428.8 428.2 428.2 427.7	I.2 I.2 I.2 I.2 I.2 I.2 I.2 I.2	516.3 515.7 515.1 514.5 513.8 513.2	1.7 1.7 1.7 1.7 1.7 1.7 1.7
23 00 10 20 30 40 50	92.3 184.6 276.8 369.1 461.4	85.4 85.3 85.2 85.1 85.0 84.9	6 6 6 6 6	170.9 170.7 170.4 170.2 170.9 169.8	.2 .2 .2 .2 .2 .2 .2 .2	256.3 255.0 255.7 255.3 255.0 254.7	·4 ·4 ·4 ·4 ·4 ·4	341.8 341.3 340.9 340.4 340.0 339.6	.8 .8 .8 .8 .8 .8 .8	427.2 426.6 426.1 425.6 425.0 424.5	I.2 I.2	51 2.6 51 2.0 51 1.3 510.7 510 1 509.4	1.7 1.8 1.8 1.8 1.8 1.8 1.8
24 00	•••••	84.8	0.	169.6	.2	25 4·4	·4	339.2	.8	424.0	1.3	508.7	1.8

SMITHSONIAN TABLES.

TABLE 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 200000.

[Derivation of table explained on pp. liii-lvi.]

	à		со	-ORDII	NATE	ES OF	DEVI	ELOPE	D PA	RALLE	EL FO	DR-	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	10' long	itude.	20′ long	itude.	30' long	itude.	40′ long	itude.	50′ long	itude.	1º long	gitude.
Latit	Meri tanc evel parz	x	У	x	у	x	У	x	у		У	x	у
24 ⁰ 00' 10 20 30 40 50	<i>mm</i> . 92.3 184.6 276.9 369.2 461.5	<i>mm.</i> 84.8 84.7 84.6 84.5 84.4 84.2	<i>mm</i> . .0 .0 .0 .0 .0	<i>mm.</i> 169.6 169.4 169.1 168.9 168.7 168.5	mm. .2 .2 .2 .2 .2 .2 .2	<i>mm</i> . 254.4 254.0 253.7 253.4 253.0 252.7	mm. •4 •5 •5 •5	<i>mm.</i> 339.2 338.7 338.3 337.8 337.4 337.0	mm. .8 .8 .8 .8 .8 .8 .8	<i>mm</i> . 424.0 423.4 422.8 422.3 421.8 421.2	mm. 1.3 1.3 1.3 1.3 1.3 1.3 1.3	mm. 508.7 508.1 507.4 506.8 506.1 505.4	<i>mm.</i> 1.8 1.8 1.8 1.8 1.8 1.8 1.9
25 00 10 20 30 40 50	92.3 184.6 276.9 369.2 461.6	84.1 84.0 83.9 83.8 83.7 83.6	.1 .1 .1 .1 .1. .1.	168.3 168.0 167.8 167.6 167.3 167.1	.2 .2 .2 .2 .2 .2	252.4 252.0 251.7 251.3 251.0 250.6	·5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	336.5 336.0 335.6 335.1 334.6 334.2	.8 .8 .8 .8 .8 .8	420.6 420.0 419.5 418.9 418.3 417.8	I.3 I.3 I.3 I.3 I.3 I.3 I.3	504.8 504.1 503.4 502.7 502.0 501.3	1.9 1.9 1.9 1.9 1.9 1.9 1.9
26 00 10 20 30 40 50	92.3 184.6 277.0 369.3 461.6	83.4 83.3 83.2 83.1 82.9 82.8	1. 1. 1. 1. 1. 1. 1.	166.9 166.6 166.4 166.1 165.9 165.7	.2 .2 .2 .2 .2 .2 .2	250.3 249.9 249.6 249.2 248.8 248.5	·> ·> ·> ·> ·> ·> ·>	333.7 333.2 332.8 332.3 331.8 331.3	.9 .9 .9 .9 .9 .9	417.2 416.6 416.0 415.4 414.8 414.2	1.3 1.3 1.3 1.3 1.4 1.4	500.6 499•9 499•1 498•4 497•7 497•0	1.9 1.9 1.9 2.0 2.0
27 00 10 20 30 40 50	92.3 184.7 277.0 369.3 461.6	82.7 82.6 82.5 82.3 82.2 82.1	I. I. I. I. I. I.	165.4 165.2 164.9 164.7 164.4 164.2	.2 .2 .2 .2 .2 .2	248.1 247.8 247.4 247.0 246.7 246.3	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	330.8 330.4 329.8 329.4 328.9 328.4		413.6 413.0 412.3 411.7 411.1 410.4	I.4 I.4 I.4 I.4 I.4 I.4 I.4	496.3 495.5 494.8 494.0 493.3 492.5	2.0 2.0 2.0 2.0 2.0 2.0 2.0
28 00 10 20 30 40 50	92.4 184.7 277.0 369.4 461.8	82.0 81.8 81.7 81.6 81.5 81.3	1. 1. 1. 1. 1. 1. 1.	163.9 163.7 163.4 163.2 162.9 162.7	.2 .2 .2 .2 .2 .2 .2	245.9 245.5 245.1 244.7 244.4 244.0	·5 ·5 ·5 ·5 ·5 ·5	327.9 327.4 326.8 326.3 325.8 325.3		409.8 409.2 408.6 407.9 407.3 406.6	1.4 1.4 1.4 1.4 1.4 1.4	491.8 491.0 490.3 489.5 488.8 488.0	2.0 2.0 2.0 2.0 2.0 2.1
29 00 10 20 30 40 50	92.4 184.7 277.1 369.4 461.8	81.2 81.1 80.9 80.8 80.7 80.5	I. I. I. I. I. I.	162.4 162.1 161.9 161.6 161.3 161.3	.2 .2 .2 .2 .2 .2 .2	243.6 243.2 242.8 242.4 242.0 241.6	•5 •5 •5 •5	324.8 324.3 323.8 323.2 322.7 322.2	.9 .9 .9 .9	406.0 405.4 404.7 404.0 403.4 402.7	I.4 I.4 I.4 I.4 I.4 I.5	487.2 486.4 485.6 484.8 484.0 483.2	2.I 2.I 2.I 2.I 2.I 2.I 2.I
30 00 10 20 30 40 50	92.4 184.8 277.1 369.5 461.9	80.4 80.3 80.1 80.0 79.9 79.7	I. I. I. I. I. I.	160.8 160.3 160.3 160.0 159.7 159.5	.2 .2 .2 .2 .2 .2 .2	241.2 240.8 240.4 240.0 239.6 239.2	•5 •5 •5 •5 •5	321.6 321.1 320.6 320.0 319.4 318.9	.9 .9 .9 .9 .9	402.0 401.4 400.7 400.0 399.3 398.6	I.5 I.5 I.5 I.5 I.5 I.5 I.5	482.5 481.6 480.8 480.0 479.2 478.4	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
31 00 10 20 30 40 50	92.4 184.8 277.2 369.6 462.0	79.6 79.4 79.3 79.2 79.0 78.9	I. I. I. I. I. I.	1 59.2 1 58.9 1 58.6 1 58.3 1 58.1 1 57.8	.2 .2 .2 .2 .2 .2	238.8 238.4 237.9 237.5 237.1 236.7	•5 •5 •5 •5 •5	318.4 317.8 317.2 316.7 316.1 315.6	1.0 1.0 1.0 1.0	398.0 397.2 396.6 395.8 395.2 394.4	1.5 1.5 1.5 1.5 1.5 1.5	477.5 476.7 475.9 475.0 474.2 473.3	2.I 2.I 2.2 2.2 2.2 2.2 2.2
32 00		78.8	Ι.	1 57.5	.2	236.2	•5	31 5.0	1.0	3 93.8	1.5	472.5	2.2

TABLE 23.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 200000.

[Derivation of table explained on pp. liii-lvi.]

	dis-		CO	-ORDI	NATI	ES OF	DEVI	ELOPE	D PA	RALLI	EL F	OR —	
Latitude of parallel.	Meridional di tances from even degree parallels.	10' long	itude.	20′ long	itude.	30⁄ long	itude.	40′ long	itude.	50′ long	gitude.	1 ⁰ long	itude.
Lati	Men tan eve	x	У	x	У	x	у	x	у	x	у	x	У
32 ⁰ 00'	mm.	<i>mm</i> . 78.8	тт. .I	mm. I 57.5	mm.	тт. 236.2	mm. •5	mm. 315.0	тт. 1.0	тт. 393.8	mm. 1.5	тт. 472.5	mm. 2.2
10	92.4	78.6	.r	157.2	.2	235.8	-5	314.4	1.0	393.0	1.5	471.6	2.2
20 30	184.8 277.2	78.5 78.3	1. .1	156.9 156.6	.2 .2	235.4 235.0	.5 .5	313.8 313.3	1.0 1.0	392.3 391.6	1.5 1.5	470.8 469.9	2.2 2.2
40	369.6	78.2	л.	156.3	.2	234.5	-5	312.7	1.0	390.8	1.5	469.0	2.2
50	462.0	78.0	Ι.	1 56.0	.2	234.1	•5	312.1	1.0	390.1	1.5	468.1	2.2
33 00		77.9	.I .I	155.8	.2 .2	233.6	.6 .6	311.5	1.0	389.4 388.6	1.5	467.3 466.4	2.2 2.2
10 20	92.4 184.8	77.7 77.6	.1	1 5 5.5 1 5 5.2	.2 .2	233.2 232.7	.6	310.9 310.3	1.0 1.0	387.9	1.5 1.5	465.5	2.2
30	277.3	77.4	.I	154.9	.2	232.3	.6	309.7	I.0	387.2 386.4	1.6	464.6	2.2
40 50	369-7 462.1	77•3 77•1	л. л.	1 54.6 1 54.3	.2 .2	231.9 231.4	.6 .6	309.2 308.6	1.0 1.0	385.7	1.6 1.6	463.7 462.8	2.2 2.2
34 00		77.0	.1	1 54.0	.3	231.0	.6	308.0	1.0	384.9	1.6	461.9	2.3
10	92.4	76.8	л.	153.7	•3	230.5	.6	307.4	1.0	384.2	1.6	461.0	2.3
20 30	184.9 277.3	76.7 76.5	.і .і	153.4 153.1	·3 ·3	230.0 229.6	.6 .6	306.7 306.1	I.0 I.0	383.4 382.6	1.6 1.6	460.1 459.2	2.3 2.3
40	369.7	76.4	л.	1 52.8	.3	229.1	.6	305.5	1.0	381.9	1.6	458.3	2.3
50	462.1	76.2	.1	I 52.4	•3	228.7	.6	304.9	1.0	381.1	1.6	457.3	2.3
35 00		76.1	.I	1 52.1	•3	228.2	.6	304.3	1.0	380.4	1.6	456.4	2.3
10 20	92.4 184.9	75.9 75.8	.I .I	151.8 151.5	•3 •3	227.8 227.3	.6 6.	303.7 303.0	1.0 1.0	379.6 378.8	1.6 1.6	455-5 454-6	2.3 2.3
30	277.4	75.6	.I	151.2	•3	226.8	.6	302.4	1.0	378.0	1.6	453.6	2.3
40 50	369.8 462.2	75·4 75·3	.I .I	1 50.9 1 50.6	·3 ·3	226.4. 225.9	.6 .6	301.8 301.2	1.0 1.0	377.2 376.5	1.6 1.6	452.7 451.8	2.3 2.3
				-								-	
36 00	92.5	75.I 75.0	л. г.	I 50.3 I 50.0	.3 .3	225.4 224.9	.6 .6	300.6 299.9	1.0 1.0	375-7 374-9	1.6 1.6	450.8 449.9	2.3 2.3
20	184.9	74.8	.I	149.6	·3	224.5	.6	299.3	1.0	374.1	1.6	448.9	2.3
30 40	277.4 369.8	74·7 74·5	1. .I	149.3 149.0	•3 •3	224.0 223.5	.6 .6	298.6 298.0	1.0 1.0	373-3 372-5	1.6 1.6	448.0 447.0	2.3 2.3
50	462.3	74.3	л.	148.7	•3	223.0	.6	297.4	1.0	371.7	1.6	446.0	2.3
37 00		74.2	.т	148.4	•3	222.5	.6	296.7	1.0	370.9	r.6	445.1	2.3
10 20	92.5 185.0	74.0 73.8	1. 1.	148.0 147.7	•3	222.1 221.6	.6 6.	296.1	1.0	370.1	1.6	444.1	2.3
30	277.4	73.7	.1	147.4	•3 •3	221.0	.6	295.4 294.8	1.0 1.0	369.2 368.4	1.6 1.6	443.I 442.I	2.3 2.3
40 50	369.9 462.4	73·5 73·4	л. л.	147.1 146.7	·3 ·3	220.6 220.1	.6 .6	294.1 293.4	1.0 1.0	367.6 366.8	1.6 1.6	441.2 440.2	2.4 2.4
38 00			1		-					-			
10	92.5	73.2 73.0	I. I.	146.4 146.1	·3 ·3	219.6 219.1	.6 .6	292.8 292.1	1.0 1.0	366.0 365.1	1.6 1.6	439.2 438.2	2.4 2.4
20 20	185.0	72.9	.1	145.7	•3	218.6	.6	291.4	1.1	364.3	1.6	437.2	2.4
30 40	277.5 370.0	72.7	I. I.	145.4 145.1	·3 ·3	218.1 217.6	.6 .6	290.8 290.1	I.I I.I	363.5 362.6	1.6 1.6	436.2	2.4 2.4
50	462.5	72.4	•I	144.7	.3	217.1	.6	289.4	1.1	361.8	1.6	435.2 434.2	2.4
39 00	•••••	72.2	л.	144.4	.3	216.6	.6	288.8	1.1	361.0	1.7	433.1	2.4
10 20	92.5 185.0	72.0 71.8	.I .I	144.0	·3	216.1	.6	288.1	1.1	360.1	1.7	432.1	2.4
30	277.5	71.7	.1	143.7 143.4	·3 ·3	215.6 215.0	.6 .6	287.4 286.7	I.I I.I	359.2 358.4	1.7 1.7	431.1 430.1	2.4 2.4
40 50	370.0 462.6	71.5	.I	143.0	•3	214.5	.6	286.0	1.1	357.5	1.7	429.0	2.4
	402.0	71.3	·1	142.7	•3	214.0	.6	285.3	1.1	356.6	1.7	428.0	2.4
40 00	•••••	71.2	.1	142.3	•3	213.5	.6	284.6	1.1	355.8	I.7	427.0	2.4
	Tenen	'			,								

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 200000.

[Derivation of table explained on pp. liii-lvi.]

	is:		c 0	-ORDIN	IATE	SOF	DEVI	ELOPEI	D PA	RALLE	EL FO	DR—	
Latîtude of parallel.	Meridional dis- tances from even degree parailels.	10' long	itude.	20' longi	itude.	30' long	itude.	40' long	itude.	50′ long	jtude.	1º longi	tude.
Lati	Men tan eve	x	у	x	у	x	у	x	у	x	у	x	у
	mm.	mm	mm.	mm.	mm.	m771.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
40°00′ 10 20	92.5	71.2	1. 1.	142.3 142.0	.3 .3	213.5	.6 6. 6.	284.6 283.9 283.2	1.I 1.I	355.8	1.7 1.7	427.0 425.9	2.4 2.4
30	185.1 277.6	70.8 70.6	1. 1.	141.6 141.3	.3 .3	212.4 211.9	.6	282.6	I.I I.I	354.0 353.2	1.7 1.7	424.9 423.8	2.4 2.4
40 50	370.1 462.6	70.5	1. 1.	140.9 140.6	.3 .3	211.4 210.8	6. 6.	281.8 281.1	1.1 1.1	352.3 351.4	1.7 1.7	422.8 421.7	2.4 2.4
41 00 10	92.5	70.1 69.9	1. 1.	140.2 139.9	•3 •3	210.3 209.8	.6 .6	280.4 279.7	1.1 1.1	350.6 349.6	I.7 I.7	420.7 419.6	2.4 2.4
20	185.1 277.6	69.8 69.6	I. I.	139.5	•3	209.2	.6 .6	279.0	1.1 1.1	348.8	1.7 1.7	418.5 417.5	2.4 2.4
30 40	370.2	69.4	.ι	1 38.8	·3 ·3	208.2	.6	277.6	1.1	347.0	1.7	416.4	2.4
50 42 00	462.7	69.2 69.0	1. 1.	138.4 138.1	•3	207.7	.6 .6	276.9	1.1 1.1	346.1	I.7 I.7	415.3	2.4 2.4
10	92.6	68.9	1.	137.7	·3 ·3	206.6	.6	275:4	1.1	344-3	1.7	413.2	2.4
20 30	185.1 277.7	68.7 68.5	1. 1.	137.4	·3 ·3	206.0 205.5	.6 .6	274.7 274.0	1.1 1.1	343·4 342.4	I.7 I.7	412.1 410.9	2.4 2.4
40 50	370.2 462.8	68.3 68.1	I. I.	136.6 136.3	.3 .3	204.9 204.4	.6 .6	273.2	I.I I.I	341.5 340.6	1.7 1.7	409.9 408.8	2.4 2.4
43 00 IO	92.6	68.0 67.8	I. I.	135.9 135.5	·3 ·3	203.8 203.3	.6 .6	271.8 271.0	1.1 1.1	339.8 338.8	I.7 I.7	407.7 406.6	2.4 2.4
20	· 185.2 277.7	67.6 67.4	.I .I	135.2	·3 ·3	202.7	.6 .6	270.3	1.I 1.I	337.9	1.7	405.5	2.4 2.4
30 40	370.3	67.2	I.	134.4	.3	201.6	.6 .6	268.8 268.1	1.I 1.I	336.0	1.7	403.3	2.4 2.4
50 44 00	462.9	67.0 66.8	1. 1.	1 34.0 1 33.7	·3 ·3	200.5	.6	267.4	1.1	335.1	1.7	401.0	2.4
10 20	92.6 185.2	66.6 66.5	.1 .1	133.3	·3 ·3	200.0	.6 .6	266.6	1.1 1.1	333.2	1.7	399-9 398.8	2.4 2.4
30	277.8	66.3	I.	132.6	•3	198.8	.6 .6	265.I 264.4	1.1 1.1	331.4	1.7	397.7 396.5	2.4 2.4
40 50	370.4 463.0	66.1 65.9	1. 1.	132.2 131.8	·3 ·3	190.3	.6	263.6	1.1	330.4 329.5	1.7	395.4	2.4
45 00 10	92.6	. 65.7 65.5	I. I.	131.4	·3 ·3	197.1 196.6	.6 .6	262.8 262.1	I.I I.I	328.6 327.6	1.7 1.7	394·3 393.1	2.4 2.4
20	185.2	65.3	1.	1 30.6	·3 ·3	196.0	.6 .6	261.3		326.6	1.7	391.9	2.4 2.4
30 40	277.8 370.4	65.1 64.9	1. 1.	1 30.3 1 2 9.9	•3	194.8	.6	259.8	1.1	324.7	1.7	389.6	2.4
50 46 00	463.0	64.7 . 64.6	1. 1.	129.5	•3	194.2	.6 .6	259.0 258.2	1.1 1.1		1.7	387.3	2.4 2.4
10	92.6	64.4	1.	128.7	.3	193.1	.6 .6	257.4	1.1	321.8	1.7	386.2	2.4
20 30	185.3 277.9	64.2 64.0	I. I.	128.3	·3	192.5	.6	255.9	1.1	319.8	1.7	383.8	2.4
40 50	370.5 463.1	63.8 63.6	1. I.	127.6 127.2	·3 ·3	191.3 190.7	.6 .6	255.I 254.3			1.7 1.7	381.5	2.4 2.4
47 00 IO	92.6	. 63.4 63.2	I. I.	1 26.8 1 26.4	·3	190.1 189.5	.6 .6	253.5				380.3 379.1	2.4 2.4
20	185.3	63.0	1.	126.0	·3	188.9	6.	251.9	1.1	314.9	1.7	377.9	2.4 2.4
30 40	277.9 370.6	62.8	I. I.	125.6	1.3	188.3		2 50.4	1.1	313.0	1.7	375-5	2.4
50 48 00	463.2	62.4 . 62.2	I. I.	124.8	-	187.2		249.6 248.8		Ĩ			
]				'	<u> </u>	<u> </u>		1				

TABLE 23.

.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2000000

[Derivation of table explained on pp. liii-lvi.]

			со	-ORDI	NATI	ES OF	DEV	ELOPE	D PA	RALLI	EL F	OR	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	10' long	gitude.	20' long	gitude.	30' long	gitude.	40' long	gitude.	50' long	gitude.	ı ^o lon	gitude.
Latit	Meri tanc evel para	x	y	x	У	x	у	x	у	x	у	x	у
48°00′	mm.	тт. 62.2	тт. • I	тт. I 24.4	mm.	тт. 186.6	тт. .6	<i>mm</i> . 248.8	mm.	mm.	<i>mm</i> .	<i>mm</i> .	nım.
10 20	92.7 185.3	62.0 61.8	.I	124.0	·3 ·3	186.0	.6	248.0	1.I 1.I	311.0 310.0	I.7 I.7	373.1 371.9	2.4 2.4
30	278.0	61.6	I. I.	123.6 123.2	•3 •3	185.4 184.7	.6 .6	247.2 246.3	I.I I.I	309.0 307.9	1.7 1.7	370.7 369.5	2.4 2.4
40 50	370.6 463.3	61.4 61.2	1. 1.	122.8 122.4	•3 •3	184.1 183.5	.6 6.	245.5 244.7	I.I I.I	306.9 305.9	1.7 1.7	368.3 367.1	2.4 2.4
49 00 10	92.7	61.0 60.8	1. .1	122.0 121.6	.3 .3	182.9 182.3	.6 .6	243.9 243.1	1.1 1.1	304.9 303.9	1.7	365.9 364.7	2.4 2.4
20	185.4 278.0	60.6 60.4	л.	121.1	•3 •3	181.7	.6	242.3	1.1	302.8	1.7	363.4	2.4
30 40	370.7	60.2	л. л.	1 20.7 I 20.3	·3 ·3	181.1 180.5	.6 .6	241.4 240.6	1.1 1.1	301.8 300.8	1.7 1.7	362.2 361.0	2.4 2.4
50	463.4	60.0	.1	119.9	•3	179.9	.6	239.8	1.1	299.8	1.7	359.8	2.4
50 00	92.7	59.8 59•5	۱. ۱۰.	119.5 119.1	·3 ·3	179.2 178.6	.6 .6	239.0 238.2	1.I 1.I	298.8 297.7	I.7 I.7	35 ⁸ .5 357.2	2.4 2.4
20 30	185.4 278.1	59-3	1. .I	118.7 118.2	.3 .3	178.0	.6	237.3	I.I	296 6	1.7	356.0	2.4
40	370.8	59.1 58.9	.т	117.8	•3 •3	177.4 176.8	.6 .6	236.5 235.7	1.I 1.I	295.6 294.6	1.7 1.7	354•7 353∙5	2.4 2.4
50	463.4	58.7	I.	117.4	•3	176.1	.6	234.8	1.1	293.6	1.7	352.3	2.4
51 00 10	92.7	58.5 58.3	л. л.	117.0 116.6	·3 ·3	175.5 174.9	.6 .6	234.0 233.2	1.1 1.1	292.5 291.4	1.7 1.6	351.0 349.7	2.4
20 30	185.4 278.1	58.1 57.9	1. .1	116.2 115.7	•3 •3	174.2 173.6	.6 .6	232.3	1.1 1.1	290.4 289.4	1.6	348.5	2.4
40	370.8	57.6	.ι	115.3	•3	173.0	.6	231.5 230.6	1.1	288.2	1.6 1.6	347.2 345.9	2.4 2.4
50 52 00	463.6	57.4	.1	114.9	•3	172.3	.6	229.8	1.1	287.2	1.6	344.6	2.4
10	92.7	57.2 57.0	.I .I	114.5 114.0	·3 ·3	171.7 171.1	.6 .6	228.9 228.1	1.0 1.0	286.2 285.1	1.6 1.6	343.4 342.1	2.4 2.4
20	185.4 278.2	56.8 56.6	I. I.	113.6 113.2	·3 ·3	170.4 169.8	.6 .6	227.2	1.0 1.0	284.0 283.0	1.6	340.8	2.4
40 50	370.9 463.6	56.4 56.2	.I .I	112.8	•3	169.1	.6	225.5	1.0	281.9	1.6 1.6	339-5 338-3	2.3 2.3
53 00	403.0	56.0	.1	112.3 111.9	•3	168.5	.6	224.6	1.0	280.8	1.6	337.0	2.3
10	92.7	55.7	.ι	111.5	·3 ·3	167.9 167.2	.6 .6	223.8 222.9	1.0 1.0	279.8 278.6	1.6 1.6	335·7 334·4	2.3
20 30	185.5 278.2	55-5 55-3	л. л.	111.0 110.6	·3 ·3	166.6 165.9	.6 .6	222.1 221.2	1.0 1.0	277.6 276.5	1.6 1.6	333.1	2.3
40 50	371.0 463.7	55.1 54.9	1. 1.	110.2 109.7	•3	165.2 164.6	.6	220.3	1.0	275.4	1.6	331.8 330.5	2.3 2.3
54 00		54.6	.1	109.7	•3	164.0	.6 .6	219.5 218.6	1.0	274.4	1.6	329.2	2.3
10	92.8 185.5	54-4	.I	108.9	·3 ·3	163.3	.6	217.7	1.0 1.0	273.2 272.1	1.6 1.6	327.9 326.6	2.3 2.3
20 30	278.3	54.2 54.0	л. л.	108.4	·3 ·3	162.0	.6 .6	216.8	1.0 1.0	271.0	1.6 1.6	325.3	2.3
40 50	371.0 463.8	53.8 53.6	л. Г.	107.5 107.1	.3 .3	161.3 160.6	.6 .6	21 5.1 214.2	1.0	269.9 268.8 267.7	1.6 1.6	323.9 322.6	2.3
55 00		53.3	л.	106.7	.3	160.0	.6	21 3.3	1.0	266.6	1.6	321.3 320.0	2.3 2.3
10 20	92.8 185.5	53.1 52.9	.I .I	106.2 105.8	.3 .3	1 59.3 1 58.7	.6 .6	212.4	1.0	265.6	1.6	318.7	2.3
30	278.3	52.7	.1	105.3	·3	1 58.0	.6	211.6 210.7	1.0 1.0	264.4 263.4	1.6	317.3 316.0	2.3 2.3
40 50	371.1 463.8	52.4 52.2	.1 .1	104.9 104.4	·3	1 57.3 1 56.7	.6 .6	209.8 208.9	I.0 I.0	262.2	1.6 1.6	314.6	2.3
56 00	•••••	52.0	•1	104.0	-	1 56.0	.6	208.0	1.0	260.0	1.6	313.3 31 <i>2</i> .0	2.3 2.3
MITHSONIAN	TASLES.									I			

A the set

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2000000

[Derivation of table explained on pp. liii-lvi.]

	d		co	-ORDII	NATE	SOF	DEVI	ELOPE	D PA	RALLI	EL F(OR —	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	to' loug	itude.	20′ long	itude.	30' long	itude.	40′ long	itude.	50⁄ long	jtude.	1° long	gitude.
Lati	Meri tane eve	x	у	x	У	x	у	x	у	x	у	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
56°00′		52.0	.1	104.0	.2	156.0	.6	208.0	I.0	260.0	1.6	312.0	2.3
10	92.8	51.8	.г	103.6	.2	155.3	.6	207.1	1.0	258.9	1.6	310.7	2.3
20	185.6	51.6	.I	103.1	.2	1 54.6	.6	206.2	1.0	257.8	1.6	309.3	2.2
30	278.4	51.3	.I	102.6	.2	1 54.0	.6	205.3	1.0	256.6	1.6	307.9	2.2
40	371.2	51.1	.I	102.2	.2	153.3	.6	204.4	1.0	255-5	1.5	306.6	2.2
50	464.0	50.9	.I	101.8	.2	152.6	.6	203.5	1.0	254.4	1.5	305.3	2.2
57.00		50.6	T	101.3	.2	1100	.6	202.6	1.0	252.2		202.0	0.0
57 00 IO	92.8	50.0	I. I.	100.8	.2	152.0 151.3	.6	202.0	1.0	253.2 252.1	1.5 1.5	303.9 302.5	2.2 2.2
20	185.6	50.2	 I.	100.4	.2	150.6	.6	200.8	1.0	252.1	1.5	302.5	2.2
30	278.4	50.0	I.	99.9	.2	149.9	.6	199.8	1.0	249.8	1.5	299.8	2.2
40	371.2	49.7	.I	99.5	.2	149.2	.6	199.0	1.0	248.7	1.5	298.4	2.2
50	464.0	49.5	л.	99.0	.2	148.5	•5	198.0	1.0	247.6	1.5	297.1	2.2
			_										
58 00		49.3	.I	98.6	.2	147.8	•5	197.1	1.0	246.4	1.5	295.7	2.2
10	92.8	49.0	1.	98.1	.2	147.2	-5	196.2	1.0	245.2	1.5	294.3	2.2
20	185.6	48.8	I.	97.6	.2	146.5	•5 •5	195.3	1.0	244.1	1.5	292.9	2.2
30	278.5	48.6	I. I.	97.2 96.7	.2	145.8	.5	194.4	1.0 1.0	243.0 241.8	1.5	291.5	2.2
40 50	371.3 464.1	48.4 48.1	1. 1.	96.3	.2	145.1 144.4	•5 •5	193.4 192.5	1.0	241.0	1.5 1.5	290.2 288.8	2.2 2.1
50	404.1	40.1		90.3		144.4	••	192.5	1.0	240.0	1.3	200.0	2.1
59 00		47.9	I.	95.8	.2	143.7	•5	191.6	1.0	239.5	1.5	287.4	2.1
10	92.8	47.7	I.	95.3	.2	143.0	.5	190.7	1.0	238.4	1.5	286.0	2.I
20	185.7	47.4	I.	94.9	.2	142.3	•5	189.7	I.0	237.2	Ì.5	284.6	2.1
30	278.5	47.2	.1	94.4	.2	141.6	·5 ·5 ·5 ·5	188.8	1.0	236.0	1.5	283.2	2.I
40	371.3	47.0	.I	93.9	.2	140.9	•5	187.9	.9	234.8	1.5	281.8	2.I
50	464.2	46.7	.1	93.5	.2	140.2	•5	186.9	•9	233.6	1.5	280.4	2.1
60 00		16-		02.0	.2	7 20 F	~	186.0		270 F		070.0	2.1
10	92.8	46.5	І. І.	93.0 92.5	.2	1 39.5 1 38.8	.5 .5 .5	185.0	.9 .9	232.5 231.3	1.5 1.5	279.0 277.6	2.1
20	185.7	46.0	.1	92.5	.2	138.1	• 5	184.1	.9	230.2	I.4	276.2	2.1
30	278.6	45.8	.1	91.6	.2	137.4	.5	183.2	.9	229.0	1.4	274.8	2.1
40	371.4	45.6	.1	91.1	.2	1 36.7	.5	182.2	.9	227.8	1.4	273.4	2.I
50	464.2	45.3	л.	<u>9</u> 0.6	.2	136.0	•5 •5	181.3	.ģ	226.6	1.4	271.9	2.1
				-		•							
61.00	•••••	45.I	.ı	90.2	.2	1 35.3	•5	180.4	.9	225.4	1.4	270.5	2.1
10	92.9	44.8	I.	89.7	.2	134.6	•5 •5 •5	179.4	.9	224.2	1.4	269.1	2.1
20	185.7	44.6	I.	89.2 88.8	.2	133.9	•5	178.5	-9	223.I 221.9	1.4 1.4	267.7 266.3	2.I 2.0
30	278.6	44.4	I. I.	88.3	.2 .2	133.1 132.4	•5	177.5 176.6	.9 .9	221.9	1.4 1.4	264.8	2.0
40 50	371.4	44.1	1. .1	87.8	.2	132.4	·5 ·5	175.6	.9	219.6	1.4	263.5	2.0
J 30	404.3	43.9				-3-7	.,	.,	.,				
62 00		43.7	.1	87.3	.2	131.0	•5	174.7	.9	218.4	1.4	262.0	2.0
IO	92.9	43.4	. I	86.9	.2	130.3	.5	173.7	-9	217.2	1.4	260.6	2.0
20	185.7	43.2	۰ι	86.4	.2	129.6	•5 •5	172.8	.9	216.0	I.4	2 59.1	2.0
. 30	278.6	43.0	.Ι	85.9	.2	128.8	·5	171.8	.9	214.8	1.4	257.7	2.0
40	371.5	42.7	I.	85.4	.2	128.1	·5	170.8	.9	213.6	1.4	256.3	2.0
50	464.4	42.5	۰1	84.9	.2	127.4	•5	169.9	.9	212.4	1.4	254.8	2.0
63 00		42.2	л.	84.5	.2	126.7	•5	168.9	.9	211.2	1.4	2 5 3.4	2.0
10	92.9	42.0	 I.	84.0	.2	126.0	.5	168.0	.9	210.0	1.4	251.9	2.0
20	185.8	41.7	.1	83.5	.2	125.2	•5	167.0	.ģ	208.8	1.4	250.5	2.0
30	278.7	41.5	.1	83.0	.2		.5	166.0	·9i	207.5	1.3	249.0	1.9
40	371.6	41.3	.1	82.5	.2	124.5 123.8	•5	165.0	-9	206.3	1.3	247.6	1.9
50	464.4	41.0	.Ι	82.0	.2	123.1	•5	164.1	•9	205.1	1.3	246.1	1.9
				0.7				160 -		-			
64 00	•••••	40.8	.1	81.6	.2	122.3	•5	163.1	•9	203.9	1.3	244.7	1.9
l	۱ 											1	

TABLE 23. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 2000000

[Derivation of table explained on pp. liii.-lviii.]

			со	-ORDI	NAT	es of	DEV.	ELOPE	D PA	RALLI	EL F	0 R —	
Latitude of parallel.	Meridional dis- tances from even degree parallels.	10' long	itude.	20⁄ long	gitude.	30′ long	itude.	40′ long	itude.	50′ long	itude.	r ^o lon	gitude.
Lati	Me tar evi	x	У	x	У	x	У	x	у	*	у	x	у
64°00′ 10 20 30 40 50	<i>mm.</i> 92.9 185.8 278.7 371.6 464.5	<i>mm.</i> 40.8 40.5 40.3 39.8 39.6	mm. .I .I .I .I .I	<i>mm.</i> 81.6 81.1 80.6 80.1 79.6 79.1	<i>mm</i> . .2 .2 .2 .2 .2 .2	<i>mm</i> . 122.3 121.6 120.9 120.1 119.4 118.7	mm. •5 •5 •5 •5	<i>mm.</i> 163.1 162.2 161.2 160.2 159.2 158.2	***** ***********	<i>mm</i> . 203.9 202.7 201.4 200.2 199.0 197.8	<i>mm.</i> 1.3 1.3 1.3 1.3 1.3 1.3	<i>mm</i> . 244.7 243.2 241.7 240.2 238.8 237.4	<i>mm</i> . 1.9 1.9 1.9 1.9 1.9 1.9
65 00 10 20 30 40 50	92.9 185.8 278.7 371.6 464.6	39-3 39-1 38-8 38-6 38-3 38-1	1. 1. 1. 1. 1. 1.	78.6 78.1 77.6 77.2 76.7 76.2	.2 .2 .2 .2 .2 .2 .2	117.9 117.2 116.5 115.7 115.0 114.2	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	157.2 156.2 155.3 154.3 153.3 152.3	ဆံထံထံထံ	196.6 195.3 194.1 192.9 191.6 190.4	I.3 I.3 I.3 I.3 I.3 I.3 I.3	235.9 234.4 232.9 231.5 230.0 228.5	1.9 1.9 1.8 1.8 1.8 1.8 1.8
66 00 10 20 30 40 50	92.9 185.9 278.8 371.7 464.6	37.8 37.6 37.3 37.1 36.8 36.6		75.7 75.2 74.7 74.2 73.7 73.2	 	113.5 112.8 112.0 111.3 110.6 109.8	·5 ·4 ·4 ·4 ·4	151.4 150.4 149.4 148.4 147.4 146.4	န္ န္ န္ န န	189.2 188.0 186.7 185.4 184.2 183.0	I.3 I.3 I.2 I.2 I.2 I.2 I.2	227.0 225.5 224.0 222.5 221.1 219.6	1.8 1.8 1.8 1.8 1.8 1.8 1.8
67 00 10 20 30 40 50	92.9 185.9 278.8 371.8 464.7	36.4 36.1 35.8 35.6 35.4 35.1	ò ò ò ò ò ò	72.7 72.2 71.7 71.2 70.7 70.2	.2 .2 .2 .2 .2 .2 .2	109.0 108.3 107.6 106.8 106.0 105.3	•4 •4 •4 •4 •4 •4	145.4 144.4 143.4 142.4 141.4 140.4	.8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	181.8 180.5 179.2 178.0 176.8 175.5	1.2 1.2 1.2 1.2 1.2 1.2 1.2	218.1 216.6 215.1 213.6 212.1 210.6	1.8 1.7 1.7 1.7 1.7 1.7 1.7
68 00 10 20 .30 40 50	93.0 185.9 278.8 371.8 464.8	34.8 34.6 34.4 34.1 33.8 33.6	ò ò ò ò ò ò	69.7 69.2 68.7 68.2 67.7 67.2	.2 .2 .2 .2 .2 .2 .2	104.6 103.8 103.0 102.3 101.5 100.8	.4 .4 .4 .4 .4 .4	1 39.4 1 38.4 1 37.4 1 36.4 1 35.4 1 34.4	.8 •7 •7 •7 •7	174.2 173.0 171.8 170.4 169.2 168.0	I 2 I.2 I.2 I.1 I.1 I.1 I.1	209.1 207.6 206.1 204.5 203.0 201.5	I.7 I.7 I.7 I.7 I.7 I.6
69 00 10 20 30 40 50	93.0 185.9 278.9 371.8 464.8	33-3 33.1 32.8 32.6 32.3 32.1	ö ö ö ö ö	66.7 66.2 65.7 65.2 64.7 64.1	.2 .2 .2 .2 .2 .2 .2	100.0 99.3 98.5 97.7 97.0 96.2	•4 •4 •4 •4 •4	1 33.4 1 32.4 1 31.3 1 30.3 1 29.3 1 28.3	·7 ·7 ·7 ·7 ·7 ·7	166.7 165.4 164.2 162.9 161.6 160.4	1.1 1.1 1.1 1.1 1.1 1.1	200.0 198.5 197.0 195.5 194.0 192.4	1.6 1.6 1.6 1.6 1.6 1.6 1.6
70 00 10 20 30 40 50	93.0 185.9 278.9 371.9 464.9	31.8 31.6 31.3 31.1 30.8 30.5	ö ö ö ö ö	63.6 63.1 62.6 62.1 61.6 61.1	.2 .2 .2 .2 .2 .2 .2 .2	95.5 94.7 93.9 93.2 92.4 91.6	•4 •4 •4 •4 •4 •4	127.3 126.2 125.2 124.2 123.2 122.2	·7 ·7 ·7 ·7 ·7 ·7	1 59.1 1 57.8 1 56.6 1 55.3 1 54.0 1 52.7	I.I I.I I.I I.I I.I I.0	190.9 189.4 187.9 186.4 184.8 183.2	1.6 1.6 1.5 1.5 1.5
71 00 10 20 30 40 50	93.0 186.0 278.9 371.9 464.9	30.3 30.0 29.8 29.5 29.3 29.0	ö ö ö ö ö	60.6 60.1 59.6 59.0 58.5 58.0	.2 .2 .2 .2 .2 .2 .2	90.9 90.1 89.3 88.6 87.8 87.1	.4 .4 .4 .4 .4 .4	121.2 120.2 119.1 118.1 117.1 116.1	·7 ·7 ·7 ·7 ·7 ·6 .6	1 51.4 1 50.2 148.9 147.6 146.4 145.1	1.0 1.0 1.0 1.0 1.0 1.0	181.7 180.2 178.7 177.1 175.6 174.1	1.5 1.5 1.5 1.5 1.5 1.5 1.4
72 00		28.8	.u	57.5	.2	86.3	•4	115.0	.6	143.8	1.0	172.6	1.4

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 200000.

[Derivation of table explained on pp. liii-lvi.]

	ii. e		со	-ORDII	NATI	es of	DEV	ELOPE:	D PA	RALLI	EL F()r —	
Latitude of parallel.	Meridional dis- tances from even degrec parallels.	10' long	itude.	20/ long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1 ⁰ long	jitude.
Lat	Mass	x	у	x	У	x	у	x	у	x	У	x	у
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
72°00′		28.8	.0	57.5	.2	86.3	•4	115.0	0.	143.8	1.0	172.6	1.4
10	93.0	28.5	.0	57.0	.2	85.5	•4	114.0	.6	142.5	1.0	171.0	1.4
20	186.0	28.2 28.0	0.	56.5 56.0	.2 .2	84.7	.3	113.0	.6 .6	141.2 139.9	1.0 1.0	169.4 167.9	I.4 I.4
30 40	279.0	20.0	0. 0.	55.5	.2	83.9 83.2	·3 ·3	111.9	.6	138.6	1.0	166.4	1.4
50	465.0	27.5	.0	54.9	.2	82.4	.3	109.9	.6	137.4	1.0	164.8	1.4
73 00		27.2	.0	54.4	.2	81.6	.3	108.8	.6	136.0	.9	163.3	1.4
10	93.0	27.0	.0	53.9	.1	80.8		107.8	.6	134.8	.9	161.7	1.4
20	186.0	26.7	0.	53.4	.I	80.1	·3 ·3 ·3 ·3	106.8	9.	133.4	.9	160.1	1.3
30	279.0	26.4	.0	52.9	.1	79.3	•3	105.7	6.	132.2	.9	158.6	1.3
40	.372.0	26.2	0.	52.3 51.8	I.	78.5		104.7	.6 .6	130.8 129.6	.9 .9	157.0	1.3 1.3
50	465.0	25.9	.0	-	1.	77.7	•3	103.6				155.5	-
74 00		25.6	.0	51.3	I.	77.0	•3	102.6	.6	128.2	.9	153.9	1.3
10	93.0	25.4	0.	50.8	I.	76.2	•3	101.6	.6	127.0	.9	1 52.3	1.3
20	186.0	25.1	0. 0.	50.3	I. I.	75·4 74.6	·3 ·3	100.5	.6 .6	125.6 124.4	.9 .9	1 50.8 1 4 9.2	1.3 1.3
30 40	279.0 372.0	24.9 24.6	.0	49.7 49.2		73.8	3	99•5 98.4	.6	123.0	.9	147.7	1.2
50	465.0	24.4	.0	48.7	.1	73.0	.3	97.4	.5	121.8	. <u>.</u>	146.1	1.2
75 00		24.1	.0	48.2	I.	72.3	.3	96.4	.5	1 20.4	.8	144.5	I.2
10	93.0	23.8	.0	47.7	I.	71.5	.3	95.3		119.2	.8	143.0	1.2
20	186.0	23.6	.0	47.1	1.	70.7	·3 ·3	94.2	.5	117.8	8.	141.4	1.2
30	279.1	23.3	.0	46.6	I.	69.9	•3	93.2	·5 ·5 ·5	116.5	.8 .8	139.8	1.2
40	372.1	23.0 22.8	.0	46.1	I.	69.1 68.3	•3	92.2 91.1	.5	115.2 113.8	.8	138.2 136.6	I.2 I.I
50	465.1	22.0	0.	45.5	I.	-	•3					-	
76 00		22.5	0.	45.0	.I	67.5 66.8	•3	90.0	いいいいい	112.6	.8 .8	135.1	I.I
10	93.0	22.2	0.	44.5	.1		·3 ·3	89.0 87.9	·Ş	111.2	.8	133.5	1.I 1.I
20	186.1	22.0 21.7	0. 0.	44.0 43.4	1. I.	65.9 65.2	-3	86.9	1.5	109.9	.8	130.3	1.1
30 40	279.I 372.I	21.5	.0	43.4	 	64.4	.3	85.8	.5	107.3	.8	128.8	I.I
50	465.1	21.2	.0	42.4	.1	63.6	·3 ·3	84.8	•5	106.0	•7	127.1	1.1
77 00		20.9	.0	41.9	.1	62.8	.3	83.7	-5	104.6	.7	125.6	I.I
10	93.0	20.7	0.	41.3	.I	62.0	-3	82.7	·5 ·5 ·5 ·5	103.4	•7	124.0	1.1
20	186.1	20.4	0.	40.8	.I	61.2	•3	81.6	•5	102.0	·7	122.4	1.0
30	279.1	20.1	0.	40.3	I.	60.4	·3 ·3 ·3	80.6		100.7	•7	120.8 119.3	1.0 1.0
40 50	372.2	19.9 19.6	0. 0.	39.8 39.2	. I . I	59.6 58.8	.3	79.5	·4 ·4	99.4 98.0	·7 ·7	117.7	1.0
				38.7		58.0	.2			96.8	.7	116.1	1.0
78 00 IO	02.0	19.4 19.1	0. 0.	38.2	I. I.	57.2	.2	77.4	·4 ·4	95.4	.7	114.5	1.0
20	93.0 186.1	18.8	.0	37.6		56.5	.2	75.3	.4	94.1	.7	112.9	1.0
30	279.1	18.6	.0	37.I	.I	55.7	.2	74.2	-4	92.8	.7	111.4	1.0
40	372.2	18.3	.0	36.6	I.	54.9	.2	73.2	-4	91.4		109.7	.9
50	465.2	18.ŏ	0.	36.0	I.	54.1	.2	72.1	•4	90.1	.6	108.1	.9
79 00		17.8	.0	35.5	.1	53-3	.2	71.0	•4	88.8		106.6	.9
10	93.0	17.5	.0	35.0	I.	52.5	.2	70.0 68.9	.4	87.4 86.2	.6	104.9	.9
20	186.1	17.2	0. 0.	34.5	I. I.	51.7	.2	67.8	·4 ·4	84.8		101.8	.9 .9 .9
30 40	279.2	17.0	.0	33.9	I.	50.1	.2	66.8	.4	83.4		- 100.1	8
50	465.2	16.4	.0	32.9	I.	49.3	.2	65.7	-4	82.2		98.6	.8
80 00		16.2	.0	32.3	1.	48.5	.2	64.6	•4	80.8	.6	97.0	.8
L	<u> </u>	1	1	<u> </u>	1		<u> </u>	1		<u> </u>	1		

SMITHSONIAN TABLES.

1

TABLE 24. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{800000}$

[Derivation of table explained on pp. liii-lvi.]

								1		
ja	l dis-	AB	SCISSAS	OF DEVI	ELOPED	PARALLI	EL.			
Latitude (parallel.	Meridional dis tances from even degree parallels.								DEVELO	
atit para	leric anc even para	5	10	15	20'	25	30'	נן	PARALI	EL.
F	2	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
	<i>mm</i> .	·		·			<i>mm</i> .	e .		
-0-1		mm.	mm.	mm.	<i>mm</i> .	<i>mm</i> .		Longitude interval.	0 ⁰	Io
0°00′ 10	230.4	116.0 116.0	231.9 231.9	347-9 347-9	463.8 463.8	579.8 579.8	695.8 695.8	ntei	•	-
20	460.7	116.0	231.9	347.8	463.8	579.8	695.7	H		
30	691.0	116.0	231.9	347.8	463.8	579.8	695.7		mm.	mm,
40	921.4	116.0	231.9	347.8	463.8	579.8	695.7	5	0.0	0.0
50	1151.8	115.9	231.9	347.8	463.8	579.7	695.6	10	0.0	0.0
1 00	· • · · · · · · ·	115.9	231.9	347.8	463.8	579.7	695.6	15	0.0	0.0
10	230.4	115.9	231.9	347.8	463.7	579.6	695.6	20 25	0.0 0.0	0.0 0.0
20	460.7 691.0	115.9	231.8	347.8	463.7	579.6	695.5	30	0.0	0.1
30 40	921.4	115.9 115.9	231.8 231.8	347·7 347·7	463.6 463.6	579.6 579.6	695.5 695.5	Ť		
50	1151.8	115.9	231.8	347.7	463.6	579.5	695.4			
1 0 00					-				2 ⁰	3°
2 00 10	230.4	115,9 115.9	231.8 231.8	347.7 347.6	463.6 463.5	579·4 579·4	695.3 695.3			3
20	460.7	115.9	231.7	347.6	463.4	579.3	695.2	_		
30	691.0	115.8	231.7	347.5	463.4	579.2	695.0	5 10	0.0 0.0	0.0 0.0
40	921.4	115.8	231.7	347.5	463.3	579.2	695.0	15	0.0	0.0
50	1151.8	115.8	231.6	347.5	463.3	579.1	694.9	20	0.0	0.1
3 00		115.8	231.6	347.4	463.2	579.0	694.8	25 30	0.I 0.I	0.I 0.2
10	230.4	115.8	231.6	347.3	463.1	578.9	694.7	JU	0.1	0.2
20 30	460.7 691.1	115.8 115.7	231.5	347.3	463.0	578.8	694.6			
40	921.4	115.7	231.5 231.4	347.2 347.2	463.0 462.9	578.7 578.6	694.4 694.3		.0	-
50	1151.8	115.7	231.4	347.1	462.8	578.5	694.2		4 ⁰	5°
4 00		115.7	231.4	347.0	462.7	578.4	694.1	5	0.0	0.0
10	230.4	115.7	231.3	347.0	462.6	578.2	693.9	10	0.0	0.0
20 30	460.7 691.1	115.6	231.3	346.9	462.5	578.2	693.8	15	0.1	0.1
40	921.4	115.6 115.6	231.2 231.1	346.8 346.7	462.4 462.3	578.0 577.8	693.6 693.4	20	0.1	0.1
50	1151.8	115.6	231.1	346.6	462.2	577.8	693.3	25 30	0.I 0.2	0.2 0.3
5 00		115.5	231.0	346.6	462.1	577.6	693.1	-		J
IO	2 30.4	115.5	231.0	346.5	462.0	577.4	692.9	<u> </u>		
20	460.7 691.1	115.5	230.9	346.4	461.8	577.3	692.8		6°	7°
30 40	921.5	115.4 115.4	2 30.8 2 30.8	346.3 346.2	461.7 461.6	577.I 577.0	692.5 692.3			î
50	1151.8	115.4	230.7	346.1	461.4	576.8	692.3 692.2	5	0.0	0.0
6 00		1167	220 7	246.0	16		60		0.0 0.1	0.0 0.1
10	230.4	115.3 115.3	230.7 230.6	346.0 345.9	461.3 461.2	576.6 576.4	692.0 691.7	15 20	0.1	0.1
20	460.8	115.2	230.5	345.8	461.0	576.2	691.5	25	0.2	0.3
30	691.1	115.2	230.4	345.7	460.9	576.1	691.3	30	0.3	0.4
40 50	921.5 1151.9	115.2 115.1	2 30.4	345.5	460.7	575.9	691.1			
	5-5-19		230.3	345.4	400.0	575-7	690.8		80	
7 00 10		115.1	230.2	345-3	460.4	57 5 . 5	690.6		0	
20	2 30.4 460.8	115.1 115.0	230.1 230.0	345.2 345.0	460.2 460.0	57 5.3	690.4 690.1			
30	691.1	115.0	229.9	345.0	459.9	575.0 574.8	689.8	5	0.0 0.0	
40	921.5	114.9	229.9	344.8	459.7	574.6	689.6	15	0.0	
50	1151.9	114.9	229.8	344.6	459-5	574.4	689.3	20	0.2	
8 00		114.8	229.7	344.5	459.4	574.2	689.0	25 20	0.3	
					FIEL	5/4**	~~ 9.0	30	0.4	
								-		

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 30000.

[Derivation of table explained on pp. liii-lvi.]

J	l dis- om ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	D	DINAT: DEVELO ARALL	PED
	mm.	<i>mm</i> .	mm.	mm.	nım.	mm.		ude al.		
8°00' 10 20	230.4 460.8	114.8 114.8 114.7	229.7 229.6 229.5	344•5 344•4 344.2	459·4 459.2 459.0	574.2 574.0 573.7	689.0 688.7 688.4	Longitude interval.	8°	9°
30 40 50	691.2 921.6 1152.0	114.7 114.6 114.6	229.4 229.3 229.2	344.I 343.9 343.8	458.8 458.6 458.4	573.4 573.2 573.0	688.1 687.8 687.5	.5'	<i>mm</i> . 0.0	mm. 0.0
9 00 10 20 30 40 50	230.4 460.8 691.2 921.6 1152.0	114.5 114.5 114.4 114.4 114.3 114.3	229.I 229.0 228.9 228.7 228.6 228.5	343.6 343.4 343.3 343.1 343.0 343.0 342.8	45 ^{8.2} 457.9 457.7 457.5 457.3 457.0	572.7 572.4 572.2 571.8 571.6 571.3	687.2 686.9 686.6 686.2 685.9 685.6	10 15 20 25 30	0.0 0.1 0.2 0.3 0.4	0.1 0.1 0.2 0.3 0.5
10 00		114.2	228.4 228.3	342.6	456.8 456.6	57 I.O 570.8	68 5. 3 684.9		10 ⁰	IIo
10 20 30 40 50	230.4 460.8 691.3 921.7 1152.1	114.2 114.1 114.0 114.0 113.9	228.2 228.0 227.9 227.8	342.4 342.3 342.1 341.9 341.7	456.4 456.1 455.8 455.6	570.4 570.1 569.8 569.5	684.5 684.1 683.8 683.4	5 10 15 20	0.0 0.1 0.1 0.2	0.0 0.1 0.1 0.2
11 00 10 20	230.4 460.9	113.8 113.8 113.7 113.6	227.7 227.5 227.4 227.3	341.5 341.3 341.1 340.9	455.4 455.1 454.8 454.6	569.2 568.8 568.6 568.2	683.0 682.6 682.3 681.8	25 30	0.4 0.5	0.4 0.6
30 40 50	691.3 921.8 1152.2	113.6 113.5	227.1 227.0	340.9 340.7 340.5	454.0 454.3 454.0	567.8 567.6	681.4 681.1		120	13°
12 00 10 20 30 40 50	230.4 460.9 691.2 921.8 1152.2	113.4 113.4 113.3 113.2 113.2 113.2	226.9 226.7 226.6 226.4 226.3 226.2	340.3 340.1 339.9 339.7 339.4 339.2	453.8 453.5 453.2 452.9 452.6 452.3	567.2 566.8 566.5 566.1 565.8 565.4	680.6 680.2 679.8 679.3 678.9 678.5	5 10 15 20 25 30	0.0 0.1 0.2 0.3 0.4 0.6	0.0 0.1 0.2 0.3 0.5 0.7
13 00 10 20	230.5 460.9	113.0 112.9 112.8	226.0 225.9 225.7	339.0 338.8 338.6	452.0 451.7 451.4	565.0 564.6 564.2	678.1 677.6 677.1		14°	 1 5°
30 40 50	691.4 921.9 1152.4	112.8 112.7 112.6	225.6 225.4 225.2	338.3 338.1 337.9	451.1 450.8 450.5	563.9 563.5 563.1	676.7 676.2 675.7	5	0.0 0.1	0.0 0.1
14 00 10 20 30 40	230.5 461.0 691.5 922.0	112.5 112.5 112.4 112.3 112.2	225.1 224.9 224.7 224.6 224.4	337.6 337.4 337.1 336.8 336.6	450.2 449.8 449.5 449.1 448.8	562.7 562.3 561.8 561.4 561.0	67 5.2 674.8 674.2 673.7 673.2	15 20 25 30	0.2 0.3 0.5 0.7	0.2 0.3 0.5 0.8
50	1152.4	112.1 112.0	224.2 224.1	336.4 336.1	448.5 448.1	560.6 560.2	672.7 672.2		16°	
15 00 10 20 30 40 50	230.5 461.0 691.5 922.0 1152.6	112.0 111.9 111.8 111.8 111.7 111.6	223.9 223.7 223.5 223.3 223.2	335.8 335.6 335.3 335.0 335.0 334.7	447.8 447.4 447.0 446.7 446.3	559.7 559.2 558.8 558.4 557.9	671.6 671.1 670.6 670.0 669.5	5 10 15 20	0.0 0.1 0.2 0.4	
16 00		111.5	223.0	334.5	446.0	557-4	668.9	25 30	0.6 0.8	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 0000.

[Derivation of table explained on pp. liii-lvi.]

ų	l dis- ree	AB	SCISSAS	OF DEV	eloped	PARALL	EL.			
Latitude o parallel.	Meridional dis- tances from even degree parallels.	5 [´] longitude.	10' longitude.	I 5´ longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINAT DEVEL(PARALI	OPED
16°00′	mm.	mm.	<i>mm</i> .	<i>mm</i> .	<i>mm</i> .	<i>mm</i> .	<i>mm</i> . 668.9	Longitude interval.	16°	17 ⁰
10 20	230.5 461.1	111.5 111.4 111.3	223.0 222.8 222.6	334.5 334.2 333.9	446.0 445.6 445.2	557.4 557.0 556.5	668.3 667.8	I.on		
30 40 50	691.6 922.1 1152.6	111.2 111.1 111.0	222.4 222.2 222.0	333.6 333-3 333.1	444.8 444•4 444.1	556.0 555.6 555.1	667.2 666.7 666.1	5 10	<i>mm.</i> 0.0 0.1	mm. 0.0 0.1
17 00 10 20 30 40 50	230.6 461.1 691.6 922.2 1152.8	110.9 110.8 110.7 110.6 110.5 110.4	221.8 221.6 221.4 221.2 221.0 220.8	332.8 332.5 332.2 331.9 331.6 331.3	443.7 443.3 442.9 442.5 442.1 441.7	554.6 554.1 553.6 553.1 552.6 552.1	665.5 664.9 664.3 663.7 663.1 662.5	15 20 25 30	0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8
18 00 10	230.6	110.3 110.2	220.6 220.4	331.0 330.6	441.3 440.8	551.6 551.0	661.9 661.3		18°	19 ⁰
20 30 40 50	461.1 691.7 922.3 1152.8	110.1 110.0 109.9 109.8	220.2 220.0 219.8 219.6	330.3 330.0 329.7 329.4	440.4 440.0 439.6 439.2	550.6 550.0 549.4 549.0	660.7 660.0 659.3 658.7	5 10 15 20	0.0 0.1 0.2 0.4	0.0 0.1 0.2 0.4
19 00 10 20 30	230.6 461.2 691.8	109.7 109.6 109.5 109.4	219.4 219.1 218.9 218.7	329.0 328.7 328.4 328.0	438.7 438.3 437.8 437.4	548.4 547.8 547.3 546.8	658.1 657.4 656.8 656.1	25 30	0.6 0.9	0.6 0.9
40 50	922.4 1153.0	109.2 109.1	218.5 218.2	327.7 327.4	436.9 436.5	546.1 545.6	655.4 654.7		20 ⁰	210
20 00 10 20 30 40 50	230.6 461.2 691.9 922.5 1153.1	109.0 108.9 108.8 108.7 108.5 108.4	218.0 217.8 217.5 217.3 217.1 216.8	327.0 326.7 326.3 326.0 325.6 325.3	436.0 435.6 435.1 434.6 434.2 433.7	545.0 544.4 543.8 543.3 542.7 542.1	654.1 653.3 652.6 652.0 651.2 650.5	5 10 15 20 25 30	0.0 0.1 0.2 0.4 0.7 1.0	0.0 0.1 0.3 0.5 0.7 1.0
21 00 10 20 30	230.6 461.3 692.0	108.3 108.2 108.1 107.9	216.6 216.4 216.1	324.9 324.5 324.2	433.2 432.7 432.2	541.5 540.9 540.3	649.8 649.1 648.4		22 ⁰	23°
40 50	922.6 1153.2	107.9 107.8 107.7	21 5.9 21 5.6 21 5.4	323.8 323.4 323.1	431.7 431.2 430.8	539.6 539.0 538.4	647.6 646.9 646.1	5 10	0.0 0.1	0.0 1.0
22 00 10 20 30 40 50	230.7 461.4 692.0 922.7 1153.4	107.6 107.4 107.3 107.2 107.1 106.9	215.1 214.9 214.6 214.4 214.1 213.9	322.7 322.3 321.9 321.6 321.2 320.8	430.3 429.8 429.2 428.8 428.2 427.7	537.8 537.2 536.6 536.0 535.3 534.6	645.4 644.6 643.9 643.1 642.4 641.6	15 20 25 30	0.3 0.5 0.7 1.1	0.3 0.5 0.8 1.1
23 00 10	230.7	106.8 106.7	213.6 213.3	320.4 320.0	427.2 426.6	534.0 533·3	640.8 640.0		24°	
20 30 40 50	461.4 692.1 922.8 1153.6	106.5 106.4 106.3 106.1	213.1 212.8 212.5 212.3	319.6 319.2 318.8 318.4	426.1 425.6 425.0 424.5	532.6 532.0 531.3 530.6	639.2 638.4 637.6 636.8	5 10 15 20	0.0 0.1 0.3 0.5	
24 00		106.0	212.0	318.0	424.0	530.0	636.0	25 30	0.5 0.8 1.1	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE $\frac{1}{80000}$.

[Derivation of table explained on pp. liii-lvi.]

Jo	ll dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALLI	EL.			
Latitude o parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO PARALI	PED
·	<i>mm</i> .								·	
24 ⁰ 00′		тт. 10б.0	<i>mm</i> . 212.0	mm." 318.0	<i>mm</i> . 424.0	<i>mm</i> . 530.0	тт. 636.0	Longitude interval.	24 ⁰	25°
10 20	230.7 461.5	105.9 105.7	211.7 211.4	317.6 317.2	423.4 422.9	529.3 528.6	635.2 634.3	ц.		
30	692.2	105.6	211.2	316.7	422.3	527.9	633.5		mm.	mm.
40	923.0	105.4	210.9	316.3	421.8	527.2	632.6	5	0.0	0.0
50	1153.7	105.3	210.6	31 5.9	421.2	526.5	631.8	10	0.1	0.1
27.00		105.2	270.2		100.6	5058	6 77 0	15	0.3	0.3
25 00 IO	230.8	105.2 105.0	210.3 210.0	315.5 315.0	420.6 420.0	525.8 525.0	631.0 630.1	20	0.5 0.8	0.5 0.8
20	461.5	104.9	209.7	314.6	419.5	524.4	620.2	25		
30	692.3	104.7	209.4	314.2	418.9	523.6	628.3	30	1.1	I.2
40	923.1	104.6	. 209.2	313.7	418.3	522.9	627.5			
50	1153.8	104.4	208.9	313.3	417.7	522.2	626.6			
26 00		104.3	208.6	312.9	417.2	521.4	625.7		26°	27 ⁰
10	230.8	104.1	208.3	312.9	417.2	520.7	624.8			
20	461.6	104.0	208.0	312.0	416.0	520.0	623.9	5	0.0	0.0
30	692.4	103.8	207.7	311.5	415.4	519.2	623.Ó	10	0.1	0.1
40	923.2	103.7	207.4	311.1	414.8	518.4	622.1	15	0.3	0.3
50	1154.0	103.5	207.1	310.6	414.2	517.7	621.2	20	0.5	0.5 0.8
27 00		103.4	206.8	310.2	413.6	517.0	620.3	25	0.8	0.ð 1.2
2/ 00 IO	230.8	103.2	206.5	309.7	413.0	516.2	619.4	30	1.2	1.2
20	461.7	103.1	206.2	309.2	412.3	515.4	618.5			
30	692.5	102.9	205.8	308.8	411.7	514.6	617.5			
40	923.3	102.8	205.5	308.3	411.1	513.8	616.6		28°	29 ⁰
50	1154.2	102.6	205.2	307.9	410.5	513.1	61 5.7	<u> </u>		
28 00		102.5	204.9	307.4	409.8	512.3	614.8	5	0.0	0.0
10	230.9	102.3	204.6	306.9	409.2	511.5	613.8	10	0. I	0.1
20	4ŏ1.7	102.1	204.3	306.4	408.6	510.7	612.8	15	0.3	0.3
30	692.6	102.0	204.0	305.9	407.9	509.9	611.9	20	0.6	0.6
40	923.5	101.8	203.6	305.5	407.3	509.1	610.9	25 30	0.9 1.3	0.9 1.3
50	1154.4	101.7	203.3	305.0	406.6	508.3	610.0	J_		5
29 00		101.5	203.0	304.5	406.0	507.5	609.0		<u> </u>	
10	230.9 467.8	101.3	202.7	304.0	405.4	506.7	608.0 607.0		30°	31°
20 30	461.8 692.7	101.2 101.0	202.3 202.0	303.5 303.0	404.7 404.0	505.8 505.0	606.0			
40	923.6	101.0	202.0	303.0	403.4	504.2	605.0		~~	0.0
50	1154.5	100.7	201.4	302.0	402.7	503.4	604.1	5	0.0 0.1	0.0
-							60	15	0.3	0.3
30 00		100.5	201.0	301.5	402.0	502.6	603.1 602.0	20	0.6	0.6
10 20	230.9 461.9	100.3 100.2	200.7 200.3	301.0	401.4 400.7	501.7 500.8	601.0	25	0.9	0.9
30	692.8	100.2	200.3	300.5 300.0	400.7	500.0	500.0	30	1.3	1.3
40	923.8	99.8	199.6	299.5	300.3	400.I	598.9			
50	1154.7	99.6	199.3	299.0	398.6	498.2	597.9			
31 00			199.0	298.4	397.9	497.4	596.9		32 ⁰	
10	231.0	99-5 99-3	199.0	290.4	397.2	497.4	595.8			
20	461.9	99.J 99.I	198.3	297.4	396.5	495.6	594.8	5	0.0	
30	692.9	99.0	197.9	296.9	395.8	494.8	593.8	10	0.2	
40	923.9	98.8	197.6	296.3	395.1	493.9	592.7	15	0.3	
50	1154.8	98.6	197.2	295.8	394.4	493.0	591.6	20	0.6	
32 00		98.4	196.9	295.3	393.7	492.2	590.6	25 30	0.9 1.4	
1 2 2 2 1		30.14	- 90.9	-23.3	393.7			<u> </u>		

.

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 800000.

[Derivation of table explained on pp. liii-lvi.]

f	l dis- m ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels,	5 [°] loogitude.	10' longitude.	I 5' longitude .	20' longitude.	25' longitude.	30' loogitude.	L	DINAT EVELO ARALL	PED
	<i>mm</i> .	<i>mm</i> .	<i>mm</i> .	mm.	mm.	mm.	mm.	itude val.		
32°00' 10 20	231.0 46 2.0	98.4 98.2 98.1	196.9 196.5 196.1	295.3 294.8 294.2	393.7 393.0 392.3	49 2.2 491.2 490.4	590.6 589.5 588.4	Longitude interval.	32°	3 3°
30 40 50	693.0 924.0 1155.0	97.9 97.7 97.5	195.8 195.4 195.1	293.7 293.1 292.6	391.6 390.8 390.1	489.4 488.6 487.6	587.3 586.3 585.2	5	mm. 0.0 0.2	<i>mm</i> . 0.0 0.2
33 00 10 20 30 40	231.0 462.1 693.2 924.2	97-4 97-2 97-0 96.8 96.6	194.7 194.3 194.0 193.6 193.2	292.1 291.5 290.9 290.4 289.8 289.3	389.4 388.6 387.9 387.2 386.4	486.8 485.8 484.9 484.0 483.0 483.0	584.1 583.0 581.9 580.8 579.7 578.5	15 20 25 30	0.3 0.6 0.9 1.4	0.3 0.6 1.0 1.4
50 34 00	1155.2	96.4 96.2	192.8 192.5	288.7	385.7 385.0	481.2	577.4		34°	35°
10 20 30 40 50	231.1 462.2 693.2 924.3 1155.4	96.0 95.9 95.7 95.5 95.3	192.1 191.7 191.3 190.9 190.6	288.2 287.6 287.0 286.4 285.8	384.2 383.4 382.6 381.9 381.1	480.2 479·3 478.3 477·4 476.4	576.3 575.2 574.0 572.8 571.7	5 10 15 20	0.0 0.2 0.4 0.6	0.0 0.2 0.4 0.6
35 00 10 20 30	231.1 462.2 693.4	95.1 94.9 94.7 94.5	190.2 189.8 189.4 189.0	285.3 284.7 284.1 283.5	380.4 379.6 378.8 378.0	4754 4745 4735 4725	570.5 569.4 568.2 567.0	25 30	1.0 1.4	1.0 1.4
40 50	924.5 1155.6	94.3 94.1	188.6 188.2	282.9 282.4	377.2 376.5	471.6 470.6	565.9 564.7		36°	
36 00 10 20 30 40 50	231.2 462.3 693.5 924.6 1155.8	93.9 93.7 93.5 93.3 93.1 92.9	187.8 187.4 187.0 186.6 186.2 185.8	281.8 281.2 280.6 280.0 279.4 278.8	37 5·7 374·9 374·1 37 3·3 372·5 371·7	469.6 468.6 467.6 466.6 465.6 464.6	563.5 562.3 561.1 559.9 558.7 557.5	5 10 15 20 25 30	0.0 0.2 0.4 0.6 1.0 1.4	0.0 0.2 0.4 0.6 1.0 1.5
37 00 10 20	231.2 462.4	92.7 92.5 92.3	185.4 185.0 184.6	278.2 277.6 276.9	370.9 370.1 369.2	463.6 462.6 461.6	556.3 555.1			
30 40 50	693.6 924.8 1156.0	92.1 91.9 91.7	184.2 183.8 183.4	276.3 275.7 275.1	368.4 367.6 366.8	460.5 459.5 458.5	553.9 552.6 551.4 550.2		0.0	0.0
38 00 10 20 30 40 50	231.2 462.5 693.7 925.0 1156.2	91.5 91.3 91.1 90.9 90.7 90.4	183.0 182.6 182.1 181.7 181.3 180.9	274.5 273.8 273.2 272.6 272.0 271.4	366.0 365.1 364.3 363.5 362.6 361.8	457·4 456·4 455·4 454·4 453·3 452.2	548.9 547.7 546.4 545.2 544.0 542.7	15 20 25 30	0.4 0.7 1.0 1.5	0.4 0.7 1.0 1.5
39 00 10	231.3	90.2 90.0	180.5 180.1	270.7	361.0	451.2	541.4		40 ⁰	<u> </u>
20 30 40 50	462.6 693.8 925.1 1156.4	89.8 89.6 89.4 89.2	179.6 179.2 178.8 178.3	270.1 269.4 268.8 268.2 267.5	360.1 359.2 358.4 357.6 356.7	450.2 449.0 448.0 447.0 445.8	540.2 538.9 537.6 536.3 535.0	5 10 15 20	0.0 0.2 0.4 0.7	
40 00	•••••	89.0	177.9	266.9	355.8	444.8	533.8	25 30	1.0 1.5	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 800000.

[Derivation of table explained on pp. liii-lvi.]

F	l dis- ee	AB	SCISSAS	OF DEV	ELOPED	PARALLI	EL.			
Latitude of parallel.	Merídional di taoces from even degree parallels.	5 ['] longitude.	IO longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	E	DINAT DEVELO ARALL	PED
40°00′ 10	mm. 231.3	mm. 89.0 88.7	<i>mm</i> . 177.9 177.5	<i>mm</i> . 266.9 266.2	<i>mm</i> . 355.8 355.0	<i>mm</i> . 444.8 443.7	<i>mm</i> . 533.8 532.4	Longitude ioterval.	40°	41°
20 30 40 50	462.6 694.0 925.3 1156.6	88.5 88.3 88.1 87.9	177.0 176.6 176.2 175.7	265.6 264.9 264.2 263.6	354.1 353.2 352.3 351.4	442.6 441.5 440.4 439.3	531.1 529.8 528.5 527.2	5 10	<i>mm.</i> 0.0 0.2	<i>mm.</i> 0.0 0.2
41 00 10 20 30 40 50	231.4 462.7 694.1 925.4 1156.8	87.6 87.4 87.2 87.0 86.8 86.5	175.3 174.8 174.4 173.9 173.5 173.0	262.9 262.3 261.6 260.9 260.2 259.6	350.6 349.7 348.8 347.9 347.0 346.1	438.2 437.1 436.0 434.8 433.8 432.6	525.8 524.5 523.1 521.8 520.5 519.1	15 20 25 30	0.4 0.7 1.0 1.5	0.4 0.7 1.0 1.5
42 00		86.3 86.1	172.6	258.9 258.2	345.2	431.5	517.8		42 ⁰	43°
10 20 30 40 50	231.4 462.8 694.2 925.6 1157.0	85.8 85.6 85.4 85.2	172.1 171.7 171.2 170.8 170.3	258.2 257.6 256.9 256.2 255.5	344-3 343-4 342.5 341.6 340.7	430.4 429.2 428.1 427.0 425.8	516.4 515.1 513.7 512.3 511.0	5 10 15 20	0.0 0.2 0.4 0.7	0.0 0.2 0.4 0.7
43 00 10 20 30	231.4 462.9 694.3	84.9 84.7 84.5 84.2	169.9 169.4 169.0 168.5	254.8 254.1 253.4 252.8	339.8 338.8 337.9 337.0	424.7 423.6 422.4 421.2	509.6 508.3 506.9 505.5	25 30	1.0 1.5	I.I I.5
40 50	925.8 1157.2	84.0 83.8	168.0 167.6	252.0 251.3	336.0 335.1	420.0 418.9	504.1 502.7		44°	45°
44 00 10 20 30 40 50	231.5 463.0 694.4 925.9 1157.4	83.6 83.3 83.1 82.8 82.6 82.4	167.1 166.6 166.2 165.7 165.2 164.7	250.6 249.9 249.2 248.5 247.8 247.1	334.2 333.2 332.3 331.4 330.4 329.5	417.8 416.6 415.4 414.2 413.0 411.8	501.3 499.9 498.5 497.0 495.6 494.2	5 10 15 20 25 30	0.0 0.2 0.4 0.7 1.1 1.5	0.0 0.2 0.4 0.7 1.1 1.5
45 00 10 20 30	231.5 463.1 694.6	82.1 81.9 81.6 81.4	164.3 163.8 163.3 162.8	246.4 245.7 245.0 244.2	328.5 327.6 326.6 325.6	410.6 409.4 408.2 407.0	492.8 491.3 489.9 488.5		46°	47°
40 50	926.1 1157.6	81.2 80.9	162.3 161.9	243.5 242.8	324.7 323.7	405.8 404.6	487.0 485.6	5 10	0.0 0.2	0.0 0.2
46 00 10 20 30 40	231.6 463.1 694.7 926.3	80.7 80.4 80.2 80.0 79.7	161.4 160.9 160.4 159.9 159.4	242.1 241.4 240.6 239.9 239.2	322.8 321.8 320.8 319.8 318.9	403.4 402.2 401.0 399.8 398.6	484.1 482.7 481.2 479.8 478.3	15 20 25 30	0.4 0.7 1.1 · 1.5	0.4 0.7 1.1 1.5
50 47 00	11 57.8	79.5 79.2	1 58.9 1 58.5	238.4 237.7	317.9 316.9	397-4 396.2	476.8 475.4		48°	
10 20 30 40 50	231.6 463.2 694.8 926.4 1158.0	79.0 78.7 78.5 78.2 78. 0	1 58.0 1 57.5 1 57.0 1 56.5 1 56.0	236.9 236.2 235.5 234.7 234.0	31 5.9 314.9 314.0 31 3.0 31 2.0	394.9 393.6 392.4 391.2 390.0	47 3.9 47 2.4 470.9 469.4 467.9	5 10 15 20	0.0 0.2 0.4 0.7	
48 00	•••••	77.7	155.5	233.2	311.0	388.7	466.4	25 30	1.0 1.5	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE BODOD

[Derivation of table explained on pp. liii-lvi.]

-	l dis- m ee	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		RDINAT	
Latitude of parallel.	Meridional dis tances from even degree parallels.	5' longitude.	10' longitude.	15' loogitude.	20' loogitude.	25' longitude.	30' longitude.	1	DEVEL(PARALI	OPED
	mm.	mm.	mm.	mm.	mm.	mm.	<i>mm</i> .	Longitude interval.	48°	108
48°00' 10 20	231.6 463.3	77-7 77-5	155.5 155.0	233.2 232.5	311.0 310.0 308.9	388.7 387.4 386.2	466.4 464.9 463.4	Long	40	49°
30 40	403.3 695.0 926.6	77.2 77.0 76.7	1 54.5 1 54.0 1 53.5	231.7 230.9 230.2	307.9 306.9	384.9 383.6	461.9 460.4	5	<i>mm</i> . 0.0	<i>mm</i> . 0.0
50	1 1 58.2	76.5	1 52.9	229.4	305.9	382.4	458.8	5 10 15	0.2 0.4	0.0 0.2 0.4
49 00 10	231.7	76.2 76.0	1 52.4 1 51.9	228.7 227.9	304.9 303.8	381.1 379.8	457·3 455.8	20	0.7	0.7
20	463.4	75.7	151.4	227.9	302.8	379.6	455.0	25 30	1.0 1.5	1.0 1.5
30	695.1	75-4	1 50.9	226.4	301.8	377.2	452.7	. 30	1.2	**3
40	926.8	75.2	1 50.4	225.6 224.8	300.8	376.0	451.1			
50	1158.4	74.9	149.9	224.0	299.8	374.7	449.6			0
50 00	. <i></i>	74-7	149.4	224.0	298.7	373-4	448.1		50°	51°
10	231.7	74.4	148.8	223.3	297.7	372.1	446.5			
20 30	463.5 695.2	74.2	148.3 147.8	222.5 221.7	296.6 295.6	370.8 369.5	445.0	5	0.0	0.0
40	926.9	73.9 73.6	147.3	220.9	293.0	368.2	443.4 441.8	10 15	0.2 0.4	0.2
50	1158.6	73.4	146.8	220.Í	293.5	366.9	440.3	20	0.7	0.7
							0	25	1.0	I.0
51 00 10	231.8	73.I 72.9	146.2 145.7	219.4 218.6	292.5 291.4	365.6 364.3	438.7 437.2	30	1.5	1.5
20	463.5	72.6	145.2	217.8	290.4	363.0	437.2			
30	695.3	72.3	144.7	217.0	289.3	361.6	434.0			i
40 50	927.1 1158.8	72.1 71.8	144.1 143.6	216.2 215.4	288.3 287.2	360.4 359.0	432.4 430.8		52°	53°
52 00		71.5	143.1	214.6	286.2	357.7	429.2	5	0.0	0.0
10	231.8	71.3	142.5	21 3.8	285.1	356.4	427.6	10	0.2	0.2
20	463.6	71.0	142.0	213.0	284.0	355.0	426.1	15	0.4	0.4
30 40	695.4 927.2	70.7 70.5	141.5 140.9	212.2 211.4	283.0 281.9	353.7	424.4 422.8	20 25	0.7 1.0	0.6 1.0
50	1159.0	70.2	140.4	210.6	280.8	352.4 351.0	421.3	30	1.5	1.5
53 00		69.9	139.9	209.8	279.8	349.7	419.6			
10 20	231.8 463.7	69.7 69.4	1 39.3 1 38.8	209.0 208.2	278.7 277.6	348.4	418.0 416.4		54°	55°
30	695.6	60.1	138.3	207.4	276.5	347.0 345.6	414.8			
40	9 ²⁷ ·4	68.8	137.7	206.6	275.4	344.2	413.1	_	0.0	0 .0
50	1159.2	68.6	1 37.2	205.7	274·3	342.9	411.5	5 10	0.2	0.2
54 00		68.3	1 36.6	204.9	273.2	341.6	409.9	15	0.4	0.4
10	231.9	68.o	136.1	204.1	272.2	340.2	409.9	20	0.6	0.6
20	463.8	67.8	135.5	203.3	271.0	338.8	406.6	25	1.0 1.4	1.0 1,4
30 40	695.7 927.6	67.5 67.2	135.0	202.4 201.6	269.9 268.8	337.4	404.9	30		
50	11 59.4	66.9	134.4 133.9	200.8	208.8	336.0 334.7	403.3 401.6			
55 00		66.7	1 33.3 132.8	200.0	266.6	333-3	400.0		56°	
10	231.9	66.4		199.1	265.5	331.9	398.3			
20 30	463.9 695.8	66.1 65.8	132.2	198.3	264.4	330.5	3 96.6	_5	0.0	
40	927.7	65.6	131.7 131.1	197.5 196.6	263.3 262.2	329.2 327.8	395.0	10 15	0.2 0.4	
50	1159.6	65.3	1 30.5	195.8	261.1	326.4	393.3 391.6	20	0.4	
56 00		61.0	1 20 0	-				25	I.O	
2000		65.0	130.0	195.0	260.0	325.0	389.9	30	1.4	
·										

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE BOBDO.

[Derivation of table explained on pp. liii-lvi.]

	l dis- ce	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' loogitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' loagitude.	D	DINAT EVELO ARALL	PED
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	tude val.	56°	57°
56°00' 10 20	232.0 463.9	65.0 64.7 64.4	130.0 129.4 128.9	195.0 194.1 193.3	260.0 258.8 257.7	325.0 323.6 322.2	389.9 388.3 386.6	Longitude interval.		5/
30 40 50	695.9 927.9 1159.8	64.2 63.9 63.6	128.3 127.7 127.2	192.4 191.6 190.8	256.6 255.5 254.4	320.8 319.4 318.0	384.9 383.2 381.5	5 10	mm. 0.0 0.2	mm. 0.0 0.2
57 00 10 20 30 40	232.0 464.0 696.0 928.0	63.3 63.0 62.7 62.5 62.2	126.6 126.0 125.5 124.9 124.3	189.9 189.1 188.2 187.4 186.5 185.6	253.2 252.1 251.0 249.8 248.7	316.6 315.1 313.7 312.3 310.8	379.9 378.1 376.4 374.8 373.0	15 20 25 30	0.4 0.6 1.0 1.4	0.3 0.6 1.0 1.4
50 58 00	1160.0	61.9 61.6	123.8 123.2	184.8	247.5 246.4	309.4 308.0	37 1.3 369.6		58°	59°
10 20 30 40 5 0	232.0 464.1 696.1 928.2 1160.2	61.3 61.0 60.7 60.4 60.2	122.6 122.0 121.5 120.9 120.3	183.9 183.1 182.2 181.4 180.5	245.2 244.1 242.9 241.8 240.6	306.6 305.1 303.6 302.2 300.8	367.9 365.1 364.4 362.7 361.0	5 10 15 20	0.0 0.2 0.3 0.6	0.0 0.1 0.3 0.6
59 00 IO 20	232.1 464.2	59-9 59-6 59-3	119.7 119.2 118.6	179.6 178.7 177.9	239.5 238.3 237.2	299.4 297.9 296.4	359-2 357-5 355-7	25 30	1.0 1.4	0.9 1.3
30 40 50	928.3 1160.4	59.0 58.7 58.4	118.0 117.4 116.8	177.0 176.1 175.3	236.0 234.8 233.7	295.0 293.6 292.1	354.0 352.3 350.5		60°	61°
60 00 10 20 30 40 50	232.1 464.2 696.4 928.5 1160.6	58.1 57.8 57.5 57.2 57.0 56.7	116.3 115.7 115.1 114.5 113.9 113.3	174-4 173-5 172-6 171-7 170-8 170-0	232.5 231.4 230.2 229.0 227.8 226.6	290.6 289.2 287.7 286.2 284.8 283.3	348.8 347.0 345.2 343.4 341.7 340.0	5 10 15 20 25 30	0.0 0.1 0.3 0.6 0.9 1.3	0.0 0.1 0.3 0.6 0.9 1.3
61 00 10	232.2	56.4 56.1 55.8	112.7 112.1 111.5	169.1 168.2 167.3	225.4 224.2 223.1	281.8 280.3 278.8	338.2 336.4 334.6		62°	 63°
20 30 40 50	464.3 696.4 928.6 1160.8	55.5 55.2 54-9	110.9 110.3 109.8	166.4 165.5 164.6	221.9 220.7 219.5	277.4 275.8 274.4	332.8 331.0 329.3	5 10	0.0 - 0.1	0.0 0.1
62 00 10 20 30 40	232.2 464.4 696.6 928.8	54.6 54-3 54-0 53.7 53.4	109.2 108.6 108.0 107.4 106.8	163.7 162.8 161.9 161.0 160.1	218.3 217.1 215.9 214.7 213.5	272.9 271.4 269.9 268.4 266.9	327.5 325.7 323.9 322.1 320.3	15 20 25 30	0.3 0.6 0.9 1.3	0.3 0.5 0.9 1.2
50 63 00	1161.0	53.I 52.8	106.2 105.6	1 59.2 1 58.3	212.3 211.1	265.4 263.9	318.5 316.7		64°	
03 00 10 20 30 40 50	232.2 464.4 696.7 928.9 1161.1	52.5 52.2 51.9 51.6 51.3	103.0 104.4 103.8 103.1 102.5	157.4 156.5 155.6 154.7 153.8	209.9 208.7 207.5 206.3 205.1	262.4 260.9 259.4 257.8 256.4	314.9 313.1 311.3 309.4 307.6	5 10 15 20 25	0.0 0.1 0.3 0.5 0.8	
64 00		51.0	101.9	1 52.9	203.9	254.8	305.8	30	1.2	

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE #0000

[Derivation of table explained on pp. lili-lvi.]

		·						-		
of	al dis- om ;ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		DINAT	FS OF
Latitude parallel.	Meridional di tances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DEVELC PARALL	PED
64°00′ 10 20	mm. 232.2 464.5	<i>mm</i> . 51.0 50.7 50.4	<i>mm</i> . 101.9 101.3 100.7	<i>mm.</i> 152.9 152.0 151.1	<i>mm.</i> 203.9 202.6 201.4	<i>mm</i> . 254.8 253.3 251.8	<i>mm.</i> 305.8 304.0 302.2	Longitude interval.	64°	65°
30 40 50	696.8 929.0 1161.2	50.1 49.8 49.4	100.1 99-5 98-9	1 50.2 1 49.2 1 48.3	200.2 199.0 197.8	250.3 248.8 247.2	300.4 298.5 296.6	5 10 15	mm. 0.0 0.1 0.3	<i>mm</i> . 0.0 0.1 0.3
65 00 10 20 30 40 50	232.3 464.6 696.9 929.1 1161.4	49.1 48.8 48.5 48.2 47.9 47.6	98.3 97.7 97.1 96.4 95.8 95.2	147.4 146.5 145.6 144.7 143.7 142.8	196.6 195.3 194.1 192.9 191.6 190.4	245.7 244.2 242.6 241.1 239.6 238.0	294.8 293.0 291.2 289.3 -287.5 285.7	20 25 30	0.5 0.8 1.2	0.5 0.8 1.2
66 00		47.3	94.6	141.9	189.2	236.5	283.8		66°	67°
10 20 30 40 50	232.3 464.6 697.0 929.3 1161.6	47.0 46.7 46.4 46.1 45.8	94.0 93.4 92.7 92.1 91.5	141.0 140.0 139.1 138.2 137.2	188.0 186.7 185.5 184.2 183.0	235.0 233.4 231.8 230.3 228.8	281.9 280.1 278.2 276.4 274.5	5 10 15 20	0.0 0.1 0.3 0.5	0.0 0.1 0.3 0.5
67 00 10 20 30	232.4 464.7 697.0	45·4 45·1 44.8 44·5	90.9 90.3 89.6 89.0	1 36.3 1 35.4 1 34.4 1 33.5	181.8 180.5 179.2 178.0	227.2 225.6 224.0 222.5	272.6 270.8 268.9 267.0	25 30	0.8 1.1	1.1
40 50	929.4 1161.8	44.2 43.9	88.4 87.7	132.6 131.6	176.8 175.5	221.0 219.4	265.1 263.2		68°	69°
68 00 10 20 30 40 50	232.4 464.8 697.1 929.5 1161.9	43.6 43.2 42.9 42.6 42.3 42.0	87.1 86.5 85.9 85.2 84.6 84.0	1 30.7 1 29.8 1 28.8 1 27.9 1 26.9 1 26.0	174.2 173.0 171.7 170.5 169.2 168.0	217.8 216.2 214.6 213.1 211.6 210.0	261.4 259.5 257.6 255.7 253.9 251.9	5 10 15 20 25 30	0.0 0.1 0.3 0.5 0.7 1.1	0.0 0.1 0.3 0.5 0.7 1.0
69 00 10 20 30	232.4 464.8 697.2	41.7 41.4 41.0 40.7	83.4 82.7 82.1 81.5	125.0 124.1 123.2 122.2	166.7 165.4 164.2 162.9	208.4 206.8 205.2 203.6	250.1 248.2 246.3 244.4		70 ⁰	71°
40 50	929.6 1162.0	40.4 40.1	80.8 80.2	121.2 120.3	161.6 160.4	202.0 200.5	242.5 240.6	5 10	0.0 0.1	0.0 0.1
70 00 10 20 30 40 50	2 32.4 464.9 697.3 929.7 1162.2	39.8 39.5 39.1 38.8 38.5 38.2	79.6 78.9 78.3 77.6 77.0 76.4	119.3 118.4 117.4 116.5 115.5 114.6	1 59.1 1 57.8 1 56.6 1 5 5.3 1 5 4.0 1 5 2.8	198.9 197.3 195.7 194.1 192.6 191.0	238.7 236.8 234.8 232.9 231.1 229.1	15 20 25 30	0.2 0.4 0.7 1.0	0.2 0.4 0.7 0.9
71 00		37.0	75.7	113.6	151.5	189.4	227.2		72 ⁰	
10 20 30 40 50	232.5 464.9 697.4 929.8 1162.3	37.6 37.2 36.9 36.6 3 6.3	75.1 74.5 73.8 73.2 72.5	112.6 111.7 110.7 109.7 108.8	1 50.2 1 48.9 1 47.6 1 46.3 1 4 5.0	187.8 186.2 184.5 182.9 181.3	225.3 223.4 221.4 219.5 217.6	5 10 15 20	0.0 0.1 0.2 0.4	
72 00	•••••	35.9	71.9	107.8	143.8	179.7	21 5.6	25 30	0.6 0.9	

SMITHSONIAN TABLES.

....

TABLE 24

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 80000.

[Derivation of table explained on pp. liii-lvi.]

jo	dis-` om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	OP	DINAT	ES OF
Latitude o parallel.	Meridional di tances from even degree parallels.	5 ['] longitude.	10' longitude.	I 5' longitude.	20' loogitude.	25' longitude.	30' longitude.	I	ORDINATES (DEVELOPED PARALLEL.	
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	tude val.	9	0
72°00' 10 20	232.5 465.0	35.9 35.6 35.3	71.9 71.2 70.6	107.8 106.9 105.9	143.8 142.5 141.2	179.7 178.1 176.5	21 5.6 21 3.7 21 1.8	Longitude interval.	72 [°]	73°
30 40 50	697.4 929.9 1162.4	35.0 34.6 34.3	70.0 69.3 68.7	104.9 104.0 103.0	139.9 138.6 137.3	174.9 173.2 171.6	209.9 207.9 206.0	5 10	<i>mm</i> . 0.0 0.1	<i>mm</i> . 0.0 0.1
73 00 10 20 30 40	232.5 465.0 697.5 930.0	34.0 33.7 33.4 33.0 32.7	68.0 67.4 66.7 66.1 65.4	102.0 101.0 100.1 99.1 98.1	136.0 134.7 133.4 132.2 130.8	170.0 168.4 166.8 165.2 163.6	204.1 202.1 200.2 198.2 196.3	15 20 25 30	0.2 0.4 0.6 0.9	0.2 0.4 0.6 0.9
50 74 00	1162.6	32.4 32.1	64.8 64.1	97.1 96.2	129.5 128.2	161.9 160.3	194.3 192.4		74 [°]	75°
10 20 30 40 50	232.5 465.1 697.6 930.1 1162.6	31.7 31.4 31.1 30.8 30.4	63.5 62.8 62.2 61.5 60.9	95.2 94.2 93.2 92.3 91.3	127.0 125.6 124.3 123.0 121.8	158.7 157.0 155.4 153.8 152.2	190.4 188.5 186.5 184.6 182.6	5 10 15 20 25	0.0 0.1 0.2 0.4 0.6	0.0 0.1 0.2 0.3
75 00 10 20	232.6 465.1	30.1 29.8 29.4	60.2 59.6 58.9	90.3 89.3 88.4	120.4 119.1 117.8	1 50.6 148.9 147.2	180.7 178.7 176.7	30	o.8	0.5 0.8
30 40 50	697.6 930.2 1162.8	29.1 28.8 28.5	58.3 57.6 56.9	87.4 86.4 85.4	116.5 115.2 113.9	145.6 144.0 142.4	174.8 172.8 170.8		76°	77°
76 00 10 20 30 40 50	232.6 465.1 697.7 930.3 1162.8	28.1 27.8 27.5 27.2 26.8 26.5	56.3 55.6 55.0 54.3 53.7 53.0	84.4 83.4 82.4 81.4 80.5 79.5	112.6 111.2 109.9 108.6 107.3 106.0	140.7 139.0 137.4 135.8 134.2 132.5	168.8 166.9 164.9 162.9 161.0 159.0	5 10 15 20 25 30	0.0 0.1 0.2 0.3 0.5 0.7	0.0 0.1 0.2 0.3 0.5 0.7
77 00 IO	232.6	26.2 25.8	52.3 51.7	78.5 77.5 76.5	104.7 103.4 102.0	1 30.8 1 29.2 1 27.6	157.0 155.0 153.1		78°	79°
20 30 40 50	465.2 697.8 930.4 1163.0	25.5 25.2 24.8 24.5	51.0 50.4 49.7 49.0	75.5 74.6 73.6	102.0 100.7 99.4 98.1	125.9 124.2 122.6	151.1 149.1 147.1	5 io	0.0 0.1	0.0 0.1
78 00 10 20 30 40	232.6 465.2 697.8 930.4	24.2 23.9 23.5 23.2 22.9	48.4 47.7 47.1 46.4 45.7	72.6 71.6 70.6 69.6 68.6	96.8 95.4 94.1 92.8 91.4	121.0 119.3 117.6 116.0 114.3	145.1 143.2 141.2 139.2 137.2	15 20 25 30	0.2 0.3 0.4 0.6	0.1 0.3 0.4 0.6
50 79 00	1163.0	22.5 22.2	45.I 44.4	67.6 66.6	90.1 88.8	112.6 111.0	1 35.2 1 3 3.2		80°	
10 20 30 40 50	232.6 465.2 697.9 930.5 1163.1	21.9 21.5 21.2 20.9 20.5	43.7 43.1 42.4 41.7 41.1	65.6 64.6 63.6 62.6 61.6	87.5 86.1 84.8 83.5 82.1	109.4 107.6 106.0 104.4 102.6	131.2 129.2 127.2 125.2 123.2	5 10 15 20	0.0 0.1 0.1 0.2	
80 00	• • • • • • • • • •	20.2	40.4	60.6	80.8	101.0	121.2	25 30	0.4 0.5	

Middle Latitude of Quadrilateral.	Area in Square Miles.
o°	474653
5	472895
10	467631
15	458891
20	446728
25	431213
30	412442
35	39°533
40	365627
45	337890
50	307 514
55	274714
60	239730
65	202823
70	164279
75	124400
80	83504
85	41924

[Derivation of table explained on pp. 1-lii.]

. . .

.

-

.

SMITHSONIAN TABLES.

e

142

[Derivation of table explained on pp. 1-lii.]

				TT	
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	
0° 00′	47 52.33	26° 00'	4282.50	52° 00'	2950.58
0 30	47 52.16	26 30	4264.51	52 30	2917.85
1 00	47 51.63	27 00	4246.20	53 00	2884.88
I 30	47 50.7 5	27 30	4227.56	53 30	2851.68
2 00	4749.52	28 00	4208.61	54 00	2818.27
2 30	4747.93	28 30	4189.33	54 30	2784.62
3 00	4746.00	29 00	4169.74	55 00	27 50.76
3 30	4743.71	29 30	4149.83	55 30	2716.67
4 00	4741.07	30 00	4129.60	56 00	2682.37
4 30	4738.08	30 30	4109.06	56 30	2647.85
5 00	4734.74	31 00	4088.21	57 00	2613.13
5 30	4731.04	31 30	4067.05	57 30	2578.19
6 00	47 27.00	32 00	4045.57	58 00	2543.05
6 30	47 22.61	32 30	4023.79	58 30	2507.70
7 00	471 7.86	33 00	4001.69	59 00	2472.16
7 30	471 2.76	33 30	3979.30	59 30	2436.42
8 00	4707.32	34 00	3956.59	60 00	2400.48
8 30	4701.52	34 30	3933.59	60 30	2364.34
9 00	4695.38	35 00	3910.28	61 00	2338.02
9 30	4688.89	35 30	3886.67	61 30	2291.51
10 00	4682.05	36 00	3862.76	62 00	2254.82
10 30	4674.86	36 30	3838.56	62 30	2217.94
11 00	4667.32	37 00	3814.06	63 00	2180.89
11 30	4659.43	37 30	3789.26	63 30	2143.66
12 00	4651.20	38 00	3764.18	64 00	2106.26
12 30	4642.63	38 30	3738.80	64 30	2068.68
13 00	4633.71	39 00	3713.14	65 00	2030.94
13 30	4624.44	39 30	3687.18	65 30	1993.04
14 00	4614.82	40 00	3660.95	66 00	1954.97
14 30	4604.87	40 30	3634.42	66 30	1916.75
15 00	4594.57	41 00	3607.62	67 00	1878.37
15 30	4583.92	41 30	35 ⁸ 0.54	67 30	1839.84
16 00	4572.94	42 00	3553.17	68 00	1801.16
16 30	4561.61	42 30	3525.54	68 30	1762.33
17 00	4549.94	43 00	3497.62	69 00	1723.36
17 30	4537.93	43 30	3469.44	69 30	1684.24
18 00	4525.59	44 00	3440.98	70 00	1645.00
18 30	4512.90	44 30	341 2.26	70 30	1605.62
19 00	4499.87	45 00	3383.27	71 00	1566.10
19 30	4486.51	45 30	3354.01	71 30	1526.46
20 00	4472.81	46 00	3324-49	72 00	1486.70
20 30	4458.78	46 30	3294.71	72 30	1446.81
21 00	4444.41	47 00	3264.68	73 00	1406.81
21 30	4429.71	47 30	3234-39	73 30	1366.69
22 00	4414.67	48 00	3203.84	74 00	1 326.46
22 30	4399.30	48 30	317 3.04	74 30	1 286.1 2
23 00	4383.60	49 00	3141.99	75 00	1 24 5.68
23 30	4367.57	49 30	31 10.69	75 30	1 20 5.1 3
24 00	4351.21	50 00	307 9.1 5	76 00	1164.49
24 30	4334.52	50 30	3047.37	76 30	1123.75
25 00	4317.51	51 00	301 5.34	77 00	1082.91
25 30	43 00.17	51 30	298 3.08	77 30	1041.99

[Derivation of table explained on pp. 1-lii.]

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
78° 00'	1000.99	82° 00'	670.27	86° 00'	336,02
78 30	959.90	82 30	628.64	86 30	294.08
79 00	918.73	83 00	586.97	87 00	252.11
79 30	877.49	83 30	545.24	87 30	210.12
80 00	836.18	84 00	503.47	88 oo	168.12
80 30	794.79	84 30	461.66	88 30	126.10
81 00	753.34	85 00	419.81	89 oo	84.07
81 30	711.83	85 30	377.93	89 30	42.04

SMITHSONIAN TABLES.

[Derivation of table explained on pp. 1-lii.]

					1
Middle latitude of quadrilateral		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
0° 00'	1188.10	13° 00'	1158.44	26° 00'	1070.64
0 15	1188.08	13 15	1157.29	26 15	1068.40
0 30	1188.05	13 30	1156.12	26 30	1066.14
0 45	1188.00	13 45	1154.93	26 45	1063.86
1 00	1187.92	14 00	1153.7 2	27 00	1061.56
1 15	1187.82	14 15	1152.48	27 15	1059.24
1 30	1187.70	14 30	1151.23	27 30	1056.90
1 45	1187.56	14 45	1149.95	27 45	1054.54
2 00	1187.39	15 00	1148.65	28 00	1052.16
2 15	1187.20	15 15	1147.33	28 15	1049.76
2 30	1186.99	15 30	1145.99	28 30	1047.34
2 45	1186.76	15 45	1144.63	28 45	1044.90
3 00	1186.51	16 00	1143.25	29 00	1042.44
3 15	1186.24	16 15	1141.84	29 15	1039.97
3 30	1185.95	16 30	1140.41	29 30	1037.47
3 45	1185.62	16 45	1138.96	29 45	1034.95
4 00	1185.28	17 00	1137.50	30 00	1032.41
4 15	1184.92	17 15	1136.00	30 15	1029.85
4 30	1184.53	17 30	1134.49	30 30	1027.27
4 45	1184.13	17 45	1132.96	30 45	1024.68
5 00	1183.70	18 00	1131.41	31 00	1022.06
5 15	1183.24	18 15	1129.83	31 15	1019.43
5 30	1182.77	18 30	1128.24	31 30	1016.77
5 45	1182.28	18 45	1126.62	31 45	1014.10
6 00	1181.76	19 00	1124.98	32 00	1011.40
6 15	1181.22	19 15	1123.32	32 15	1008.69
6 30	1180.66	19 30	1121.64	32 30	1005.96
6 45	1180.08	19 45	1119.93	32 45	1003.20
7 00	1179.48	20 00	1118.21	33 00	1000.43
7 15	1178.85	20 15	1116.47	33 15	997.64
7 30	1178.20	20 30	1114.71	33 30	994.83
7 45	1177.53	20 45	1112.92	33 45	992.00
8 00	1176.84	21 00	1111.11	34 00	989.16
8 15	1176.13	21 15	1109.28	34 15	986.29
8 30	1175.39	21 30	1107.44	34 30	983.41
8 45	1174.63	21 45	1105.57	34 45	980.50
9 00	1173.86	22 00	1103.68	35 00	977.58
9 15	1173.06	22 15	1101.77	35 15	974.64
9 30	1172.23	22 30	1099.84	35 30	971.68
9 45	1171.39	22 45	1097.88	35 45	968.70
10 00	1170.52	23 00	1095.91	36 00	965.70
10 15	1169.63	23 15	1093.92	36 15	962.68
10 30	1168.73	23 30	1091.90	36 30	959.65
10 45	1167.80	23 45	1089.87	36 45	956.60
11 00	1166.84	24 00	1087.81	37 00	953.52
11 15	1165.86	24 1 <u>5</u>	1085.74	37 15	950.43
11 30	1164.86	24 30	1083.64	37 30	947.32
11 45	1163.85	24 45	1081.52	37 45	944.21
12 00	1162.81	25 00	1079.39	38 00	941.05
12 15	1161.75	25 15	1077.23	38 15	937.88
12 30	1160.67	25 30	1075.05	38 30	934.71
12 45	1159.56	25 45	1072.85	3 ⁸ 45	931.51
MITHSONIAN TABL					I

TABLE 27.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. l-lii.]

	[Derivation of rable explained on pp. 1-111.]							
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.			
39° 00'	928.29	52° 00'	737.65	65° 00'	507.74			
39 15	925.06	52 15	733.57	65 15	503.01			
39 30	921.80	52 30	729.47	65 30	498.26			
39 45	918.53	52 45	725.36	65 45	493.51			
40 00	915.25	53 00	721.23	66 00	488.75			
40 15	911.94	53 15	717.08	66 5	483.97			
40 30	908.61	53 30	712.93	66 30	479.19			
40 45	905.27	53 45	708.76	66 45	474.40			
41 00	901.91	54 00	704.57	67 00	469.60			
41 15	898.54	54 15	700.38	67 15	464.78			
41 30	895.14	54 30	696.16	67 30	459.96			
41 45	891.73	54 45	691.94	67 45	455.13			
42 00	888.30	55 00	687.70	68 00	450.29			
42 15	884.85	55 15	683.44	68 15	445.45			
42 30	881.39	55 30	679.17	68 30	440.59			
42 45	877.91	55 45	674.89	68 45	435.72			
43 00	874.41	56 00	670.60	69 00	430.84			
43 15	870. 90	56 15	666.29	69 15	425.96			
43 30	867.37	56 30	661.97	69 30	421.06			
43 45	863.82	56 45	657.64	69 45	416.16			
44 00	860.25	57 00	653.29	70 00	411.25			
44 15	856.67	57 15	648.93	70 15	406.34			
44 30	853.07	57 30	644.55	70 30	401.41			
44 45	849.46	57 45	640.17	70 45	396.47			
45 00	845.82	58 00	635.77	71 00	391.53			
45 15	842.18	58 15	631.36	71 15	386.58			
45 30	838.51	58 30	626.93	71 30	381.62			
45 45	834.83	58 45	622.49	71 45	376.65			
46 00	831.13	59 00	618.05	72 00	371.68			
46 15	827.42	59 15	613.59	72 15	366.70			
46 30	823.68	59 30	609.11	72 30	361.71			
46 45	819.94	59 45	604.62	72 45	356.71			
47 00	816.18	60 00	600.13	73 00	351.71			
47 15	812.40	60 15	595.62	73 15	346.69			
47 30	808.60	60 30	591.09	73 30	341.68			
47 45	804.79	60 45	586.56	73 45	336.65			
48 00	800.97	61 00	582.01	74 00	331.62			
48 15	797.13	61 15	577.45	74 15	326.58			
48 30	793.27	61 30	572.88	74 30	321.53			
48 45	789.39	61 45	568.30	74 45	316.48			
49 00	785.50	62 00	563.71	75 00	311.42			
49 15	781.60	62 15	559.11	75 15	306.36			
49 30	777.68	62 30	554.49	75 30	301.28			
49 45 '	773.74	62 45	549.86	75 45	296.21			
50 00	769.79	63 00	545.23	76 00	291.12			
50 15	765.83	63 15	540.58	76 15	286.04			
50 30	761.85	63 30	535.92	76 30	280.94			
50 45	7 57.85	63 45	531.25	76 45	275.84			
51 00	753-84	64 00	526.57	77 00	270.73			
51 15	749-82	64 15	521.88	77 15	265.62			
51 30	745-78	64 30	517.17	77 30	260.50			
51 45	741-72	64 45	512.46	77 45	255.38			

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
78° co'	250.25	82° 00'	167.57	86° 00'	84.01
78 15	245.12	82 15	162.37	86 15	78.76
78 30	239.98	82 30	157.16	86 30	73.52
78 45	234.83	82 45	151.95	86 45	68.27
79 00	229.68	83 00	146.74	87 00	63.03
79 15	224.53	83 15	141.53	87 15	57.78
79 30	219.37	83 30	136.31	87 30	52.53
79 45	214.21	83 45	131.09	87 45	47.28
80 00	209.05	84 00	125.87	88 00	42.03
80 15	203.88	84 15	120.64	88 15	36.78
80 30	198.70	84 30	115.42	88 30	31.53
80 45	193.52	84 45	110.18	88 45	26.27
81 00	188.34	85 00	104.95	89 00	21.02
81 15	183.15	85 15	99.72	89 15	15.76
81 30	177.96	85 30	94.48	89 30	10.51
81 45	172.77	85 45	89.25	89 45	5.26

[Derivation of table explained on pp. 1-lii.]

SMITHBONIAN TABLES.

.

.

[Derivation of table explained on pp. 1-lii.]

47 0.47 0.33 0.18 0.03 0.88 0.73
.33 .18 .03 .88 .73
.73
•58 •43
.28 .12 .96 .81
.65 .49 .33 .17
.00 .83 .67 .50
.33 .16 .99 .82
.64 .46 .28 .10
.92 .74 .56 .38
.19 .00 .81 .62
.43 .24 .05 .86
.66 .46 .26 .06
.86 .66 .45 .25
.04 .83 .62 .41

[Derivation of table explained on pp. 1-lii.]

		1	<u> </u>		
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	
19° 37′ 30″	280.20	26° 07′ 30″	267.38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	251.15
19 45 00	279.99	26 15 00	267.10		250.80
19 52 30	279.77	26 22 30	266.82		250.45
20 00 00	2 7 9.55	26 30 00	266.54		250.11
20 07 30	279.34	26 37 30	266.25	33 07 30	249.76
20 15 00	279.12	26 45 00	265.97	33 15 00	249.41
20 22 30	278.90	26 52 30	265.68	33 22 30	249.06
20 30 00	278.68	27 00 00	265.39	33 30 00	248.71
20 37 30	278.46	27 07 30	265.10	33 37 30	248.36
20 45 00	278.23	27 15 00	264.81	33 45 00	248.00
20 52 30	278.00	27 22 30	264.52	33 52 30	247.65
21 00 00	277.78	27 30 00	264.23	34 00 00	247.29
21 07 30	277.55	27 37 30	263.93	34 07 30	246.93
21 15 00	277.32	27 45 00	263.64	34 15 00	246.57
21 22 30	277.09	27 52 30	263.34	34 22 30	246.21
21 30 00	276.86	28 00 00	263.04	34 30 00	245.85
21 37 30	276.63	28 07 30	262.74	34 37 30	245.49
21 45 00	276.39	28 15 00	262.44	34 45 00	245.13
21 52 30	276.16	28 22 30	262.14	34 5 ² 30	244.76
22 00 00	275.92	28 30 00	261.84	35 00 00	244.40
22 07 30	27 5.68	28 37 30	261.53	35 07 30	244.03
22 15 00	27 5.44	28 45 00	261.23	35 15 00	243.66
22 22 30	27 5.20	28 52 30	260.92	35 22 30	243.29
22 30 00	274.96	29 00 00	260.61	35 30 00	242.92
22 37 30	274.72	29 07 30	260.30	35 37 30	242.55
22 45 00	274.47	29 15 00	259.99	35 45 00	242.18
22 52 30	274.22	29 22 30	259.68	35 52 30	241.80
23 00 00	273.98	29 30 00	259.37	36 00 00	241.43
23 07 30	273.73	29 37 30	259.05	36 07 30	241.05
23 15 00	273.48	29 45 00	258.74	36 15 00	240.67
23 22 30	273.23	29 52 30	258.42	36 22 30	240.29
23 30 00	272.98	30 00 00	258.10	36 30 00	239.91
23 37 30	272.72	30 07 30	257.78	36 37 30	239.53
23 45 00	272.47	30 15 00	257.46	36 45 00	239.15
23 52 30	272.21	30 22 30	257.14	36 52 30	238.77
24 00 00	271.95	30 30 00	256.82	37 00 00	238.38
24 07 30	271.69	30 37 30	256.49	37 07 30	237.99
24 15 00	271.44	30 45 00	256.17	37 15 00	237.61
24 22 30	271.17	30 52 30	255.84	37 22 30	237.22
24 30 00	270.91	31 00 00	255.52	37 30 00	236.83
24 37 30	270.65	31 07 30	255.19	37 37 30	236.44
24 45 00	270.38	31 15 00	254.86	37 45 00	236.05
24 52 30	270.11	31 22 30	254.53	37 52 30	235.66
25 00 00	269.85	31 30 00	254.19	38 00 00	235.26
25 07 30	269.58	31 37 30	253.86	38 07 30	234.87
25 15 00	269.31	31 45 00	253.53	38 15 00	234.47
25 22 30	269.04	31 52 30	253.19	38 22 30	234.07
25 30 00	268.76	32 00 00	252.85	38 30 00	233.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268.49 268.21 267.94 267.66	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	252.51 252.17 251.83 251.49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233.28 232.88 232.48 232.07

[Derivation of table explained on pp. l-lii.]

	1				
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	
39° 07′ 30″	231.67	45° 37′ 30″	209.17	52° 07' 30''	183.90
39 15 00	231.27	45 45 00	208.71	52 15 00	183.39
39 22 30	230.86	45 52 30	208.25	52 22 30	182.88
39 30 00	230.45	46 00 00	207.78	52 30 00	182.37
39 37 30	230.04	46 07 30	207. 32	52 37 30	181.85
39 45 00	229.63	46 15 00	206.86	52 45 00	181.34
39 5 ² 30	229.22	46 22 30	206.39	52 52 30	180.82
40 00 00	228.81	46 30 00	205.92	53 00 00	180.31
40 07 30	228.40	46 37 30	205.45	53 07 30	179.79
40 15 00	227.99	46 45 00	204.99	53 15 00	179.27
40 22 30	227.57	46 52 30	204.52	53 22 30	178.75
40 30 00	227.15	47 00 00	204.05	53 30 00	178.23
40 37 30	226.7 3	47 07 30	203.57	53 37 30	177.71
40 45 00	226.32	47 15 00	203.10	53 45 00	177.19
40 52 30	22 5.90	47 22 30	202.63	53 52 30	176.67
41 00 00	22 5.48	47 30 00	202.15	54 00 00	176.14
41 07 30	225.06	47 37 30	201.67	54 07 30	175.62
41 15 00	224.64	47 45 00	201.20	54 15 00	175.10
41 22 30	224.21	47 52 30	200.72	54 22 30	174.57
41 30 00	223.79	48 00 00	200.24	54 30 00	174.04
41 37 30	223.36	48 07 30	199.76	54 37 30	173.51
41 45 00	222.93	48 15 00	199.28	54 45 00	172.99
41 52 30	222.50	48 22 30	198.80	54 5 ² 30	172.46
42 00 00	222.08	48 30 00	198.32	55 00 00	171.93
42 07 30	221.65	48 37 30	197.83	55 07 30	171. 39
42 15 00	221.21	48 45 00	197.35	55 15 00	170.86
42 22 30	220.78	48 52 30	196.86	55 22 30	170.33
42 30 00	220.35	49 00 00	196.38	55 30 00	169.79
42 37 30	219.91	49 07 30	195.89	55 37 30	169.26
42 45 00	219.48	49 15 00	195.40	55 45 00	168.72
42 52 30	219.04	49 22 30	194.91	55 52 30	168.19
43 00 00	218.60	49 30 00	194.42	56 00 00	167.65
43 07 30	218.16	49 37 30	193.93	56 07 30	167.11
43 15 00	217.73	49 45 00	193.44	56 15 00	166.57
43 22 30	217.28	49 52 30	192.94	56 22 30	166.03
43 30 00	216.84	50 00 00	192.45	56 30 00	165.49
43 37 30	216.40	50 07 30	191.95	56 37 30	164 .9 5
43 45 00	215.96	50 15 00	191.46	56 45 00	164.41
43 5 ² 30	215.51	50 22 30	190.96	56 52 30	163.87
44 00 00	215.06	50 30 00	190.46	57 00 00	163.32
44 07 30	214.61	50 37 30	189.96	57 07 30	162.78
44 15 00	214.17	50 45 00	189.46	57 15 00	162.23
44 22 30	213.72	50 52 30	188.96	57 22 30	161.68
44 30 00	213.27	51 00 00	188.46	57 30 00	161.14
44 37 30	212.82	51 07 30	187.96	57 37 30	160.59
44 45 00	212.37	51 15 00	187.46	57 45 00	160.04
44 5 ² 30	211.91	51 22 30	186.95	57 52 30	159.49
45 00 00	211.46	51 30 00	186.45	58 00 00	158.94
45 07 30	211.00	51 37 30	185.94	58 07 30	1 58.39
45 15 00	210.55	51 45 00	185.43	58 15 00	1 57.84
45 22 30	210.09	51 52 30	184.92	58 22 30	1 57.29
45 30 00	209.63	52 00 00	184.41	58 30 00	1 56.73
MITHSONIAN TAB					

[Derivation of table explained on pp. l-lii.]

		1		1	[]
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
58° 37′ 30″	1 56.18	65° 07′ 30″	126.34	71° 37′ 30″	94.78
58 45 00	1 55.62	65 15 00	125.75	71 45 00	94.16
58 52 30	1 55.07	65 22 30	125.16	71 52 30	93.54
59 00 00	1 54.51	65 30 00	124.57	72 00 00	92.92
59 07 30	153.96	65 37 30	123.97	72 07 30	92.30
59 15 00	153.40	65 45 00	123.38	72 15 00	91.68
59 22 30	152.84	65 5 ² 30	122.78	72 22 30	91.05
59 30 00	152.28	66 00 00	122.19	72 30 00	90.43
59 37 30	151.72	66 07 30	121.59	72 37 30	89.80
59 45 00	151.16	66 15 00	120.99	72 45 00	89.18
59 5 ² 30	150.60	66 22 30	120.40	72 52 30	88.55
60 00 00	150.03	66 30 00	119.80	73 00 00	87.93
60 07 30	149.47	66 37 30	1 19.20	73 07 30	87.30
60 15 00	148.91	66 45 00	1 18.60	73 15 00	86.67
60 22 30	148.34	66 52 30	1 18.00	73 22 30	86.05
60 30 00	147.77	67 00 00	1 17.40	73 30 00	85.42
60 37 30	147.21	67 07 30	116.80	73 37 30	84.79
60 45 00	146.64	67 15 00	116.20	73 45 00	84.16
60 52 30	146.07	67 22 30	115.59	73 5 ² 30	83.53
61 00 00	145.50	67 30 00	114.99	74 00 00	82.91
61 07 30	144.93	67 37 30	114.39	74 07 30	82.28
61 15 00	144.36	67 45 00	113.78	74 15 00	81.65
61 22 30	143.79	67 52 30	113.18	74 22 30	81.01
61 30 00	143.22	68 00 00	112.57	74 30 00	80.38
61 37 30	142.65	68 07 30	111.97	74 37 30	79-75
61 45 00	142.08	68 15 00	111.36	74 45 00	79-12
61 52 30	141.50	68 22 30	110.76	74 5 ² 30	78-49
62 00 00	140.93	68 30 00	110.15	75 00 00	77-86
62 07 30	140.35	68 37 30	109.54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77-22
62 15 00	139.78	68 45 00	108.93		76.59
62 22 30	139.20	68 5 ² 30	108.32		75.95
62 30 00	138.62	69 00 00	107.71		75.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 38.04 1 37.47 1 36.89 1 36.31	69 07 30 69 15 00 69 22 30 69 30 00	107.10 106.49 105.88 105.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.69 74.05 73.42 72.78
63 07 30	1 35.73	69 37 30	104.65°	76 07 30	72.14
63 15 00	1 35.1 5	69 45 00	104.04	76 15 00	71.51
63 22 30	1 34.56	69 52 30	103.43	76 22 30	70.87
63 30 00	1 33.98	70 00 00	102.81	76 30 00	70.24
63 37 30	1 33.40	70 07 30	102.20	76 37 30	69.60
63 45 00	1 32.81	70 15 00	101.59	76 45 00	68.96
63 52 30	1 32.23	70 22 30	100.97	76 52 30	(8.32
64 00 00	1 31.64	70 30 00	100.35	77 00 00	67.68
64 07 30	1 31.06	70 37 30	99.74	77 07 30	67.04
64 15 00	1 30.47	70 45 00	99.12	77 15 00	66.41
64 22 30	1 29.88	70 52 30	98.50	77 22 30	65.77
64 30 00	1 29.29	71 00 00	97.88	77 30 00	65.13
64 37 30	128.70	71 07 30	97.26	77 37 30	64.49
64 45 00	128.12	71 15 00	96.65	77 45 00	63.85
64 52 30	127.53	71 22 30	96.03	77 52 30	63.20
65 00 00	126.94	71 30 00	95.41	78 00 00	62.56

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
78° 07' 30''	61.92	82° 07' 30''	41.24	86° 07' 30''	20.35
78 15 00	61.28	82 15 00	40.59	86 15 00	19.69
78 22 30	60.64	82 22 30	39.94	86 22 30	19.04
78 30 00	60.00	82 30 00	39.29	86 30 00	18.38
78 37 30	59·35	82 37 30	38.64	86 37 30	17.72
78 45 00	58.71	82 45 00	37.99	86 45 00	17.07
78 52 30	58.06	82 52 30	37.34	86 52 30	16.41
79 00 00	57·42	83 00 00	36.69	87 00 00	15.76
79 07 30	56.78	83 07 30	36.03	87 07 30	15.10
79 15 00	56.1 3	83 15 00	35.38	87 15 00	14.44
79 22 30	55.49	83 22 30	34.73	87 22 30	13.79
79 30 00	54.84	83 30 00	34.08	87 30 00	13.13
79 37 30	54.20	83 37 30	33.42	87 37 30	12.48
79 45 00	53.55	83 45 00	32.77	87 45 00	11.82
79 5 ² 30	52.91	83 5 ² 30	32.12	87 52 30	11.16
80 00 00	52.26	84 00 00	31.47	88 00 00	10.51
80 07 30	51.62	84 07 30	30.81	88 07 30	9.85
80 15 00	50.97	84 15 00	30.16	88 15 00	9.20
80 22 30	50.32	84 22 30	29.51	88 22 30	8.54
80 30 00	49.68	84 30 00	28.86	88 30 00	7.88
80 37 30	49.03	84 37 30	28.20	88 37 30	7.22
80 45 00	48.38	84 45 00	2.54	88 45 00	6.57
80 52 30	47.73	84 52 30	26.89	88 52 30	5.91
81 00 00	47.08	85 00 00	26.24	89 00 00	5.26
81 07 30	46.44	85 07 30	25.58	89 07 30	4.60
81 15 00	45.79	85 15 00	24.93	89 15 00	3.94
81 22 30	45.14	85 22 30	24.27	89 22 30	3.28
81 30 00	44.49	85 30 00	23.62	89 30 00	2.63
81 37 30 81 45 00 81 52 30 82 00 00	43.84 43.19 42.54 41.89	85 37 30 85 45 00 85 52 30 86 00 00	22.97 22.31 21.66 21.00	89 37 30 89 45 00 89 52 30	1.97 1.31 0.66

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

154

-

TABLE 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

				1	
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
0° 05' 0 15 0 25 0 35	132.01 132.01 132.01 132.01 132.00	8° 45′ 8 55 9 05 9 15	1 30.51 1 30.46 1 30.40 1 30.34	17° 25′ 17 35 17 45 17 55	126.11 126.00 125.88 125.77
0 45	132.00	9 25	130.28	18 05	125.65
0 55	131.99	9 35	130.22	18 15	125.54
1 05	131.99	9 45	130.15	18 25	125.42
1 15	131.98	9 55	130.09	18 35	125.30
1 25	131.97	10 05	1 30.02	18 45	125.18
1 35	131.96	10 15	1 29.96	18 55	125.06
1 45	131.95	10 25	1 29.89	19 05	124.94
1 55	131.94	10 35	1 29.82	19 15	124.81
2 05	131.93	10 45	129.76	19 25	124.69
2 15	131.91	10 55	129.68	19 35	124.56
2 25	131.90	11 05	129.61	19 45	124.44
2 35	131.88	11 15	129.54	19 55	124.31
2 45	131.86	11 25	129.47	20 05	124.18
2 55	131.84	11 35	129.39	20 15	124.05
3 05	131.82	11 45	129.32	20 25	123.92
3 15	131.80	11 55	129.24	20 35	123.79
3 25	131.78	12 05	129.16	20 45	123.66
3 35	131.76	12 15	129.08	20 55	123.52
3 45	131.74	12 25	129.00	21 05	123.39
3 55	131.71	12 35	128.92	21 15	123.25
4 05	131.68	12 45	128.84	21 25	123.12
4 15	131.66	12 55	128.76	21 35	122.98
4 25	131.63	13 05	128.67	21 45	122.84
4 35	131.60	13 15	128.59	21 55	122 70
4 45	131.57	13 25	128.50	22 05	122.56
4 55	131.54	13 35	128.41	22 15	122.42
5 05	131.50	13 45	128.33	22 25	122.28
5 15	131.47	13 55	128.24	22 35	122.13
5 25	131.44	14 05	128.14	22 45	121.99
5 35	131.40	14 15	128.05	22 55	121.84
5 45	131.36	14 25	127.96	23 05	121.69
5 55	131.33	14 35	127.87	23 15	121.55
6 05	131.29	14 45	1 27.77	23 25	121.40
6 15	131.25	14 55	1 27.67	23 35	121.25
6 25	131.21	15 05	1 27.58	23 45	121.10
6 35	131.16	15 15	1 27.48	23 55	120.94
6 45	131.12	15 25	127.38	24 05	1 20.79
6 55	131.07	15 35	127.28	24 15	1 20.64
7 05	131.03	15 45	127.18	24 25	1 20.48
7 15	130.98	15 55	127.08	24 35	1 20.33
7 25	1 30.93	16 05	1 26.98	24 45	120.17
7 35	1 30.88	16 15	1 26.87	24 55	120.01
7 45	1 30.84	16 25	1 26.77	25 05	119.85
7 55	1 30.79	16 35	1 26.66	25 15	119.69
8 05	1 30.7 3	16 45	1 26.55	25 25	119.53
8 15	1 30.68	16 55	1 26.44	25 35	119.37
8 25	1 30.63	17 05	1 26.33	25 45	119.21
8 35	1 30.57	17 15	1 26.22	25 55	119.04
MITHSONIAN TABL					

[Derivation of table explained on pp. 1-lii.]

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

[1			
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
26° 05'	118.87	34° 45'	108.94	43° 25′	96.50
26 15	118.71	34 55	108.73	43 35	96.24
26 25	118.54	35 05	108.51	43 45	95.98
26 35	118.37	35 15	108.29	43 55	95.71
26 45	118.21	35 25	108.07	44 05	95·45
26 55	118.04	35 35	107.85	44 15	95.19
27 05	117.87	35 45	107.63	44 25	94.92
27 15	117.69	35 55	107.41	44 35	94.65
27 25	117.52	36 05	107.19	44 45	94.38
27 35	117.35	36 15	106.96	44 55	94.11
27 45	117.17	36 25	106.74	45 05	93.84
27 55	116.99	36 35	106.51	45 15	93.58
28 05	116.82	36 45	106.29	45 25	93.30
28 15	116.64	36 55	106.06	45 35	93.03
28 25	116.46	37 05	105.83	45 45	92.76
28 35	116.28	37 15	105.60	45 55	92.48
28 45	116.10	37 25	105.37	46 05	92.21
28 55	115.92	37 35	105.14	46 15	91.94
29 05	115.73	37 45	104.91	46 25	91.66
29 15	115.55	37 55	104.68	46 35	91.38
29 25	115.37	38 05	104.44	46 45	91.10
29 35	115.18	38 15	104.21	46 55	90.82
29 45	114.99	38 25	103.97	47 05	90.55
29 55	114.81	3 ⁸ 35	103.74	47 15	90.27
30 05	114.62	38 45	103.50	47 25	89.99
30 15	114.43	38 55	103.26	47 35	89.70
30 25	114.24	39 05	103.02	47 45	89.42
30 35	114.04	39 15	102.78	47 55	89.14
30 45	113.85	39 25	102.54	48 05	88.85
30 55	113.66	39 35	102.30	48 15	88.57
31 05	113.47	39 45	102.06	48 25	88.28
31 15	113.27	39 55	101.82	48 35	88.00
31 25	113.07	40 05	101.57	48 45	87.71
31 35	112.88	40 15	101.33	48 55	87.42
31 45	112.68	40 25	101.08	49 05	87.13
31 55	112.48	40 35	100.83	49 15	86.84
32 05	112.28	40 45	100.59	49 25	86.55
32 15	112.08	40 55	100.34	49 35	86.26
32 25	111.87	41 05	100.09	49 45	85.97
32 35	111.67	41 15	99.84	49 55	85.68
32 45	111.47	41 25	99•59	50 05	85.39
32 55	111.26	41 35	99•33	50 15	85.09
33 05	111.06	41 45	99•08	50 25	84.80
33 15	110.85	41 55	98.83	50 35	84.50
33 25	110.64	42 0 5	98.57	50 45	84.21
33 35	110.43	42 15	98.32	50 55	83.91
33 45	110.22	42 25	98.06	51 05	83.61
33 55	110.01	42 35	97.80	51 15	83.31
34 05	109.80	42 45	97-55	51 25	83.01
34 15	109.59	42 55	97-29	51 35	82.71
34 25	109.37	43 05	97.03	51 45	82.41
34 35	109.16	43 15	96.77	51 55	82.11

SMITHPONIAN TABLES.

.

		1		1	
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
52° 05'	81.81	60° 45'	65.17	69° 25′	46.97
52 15	81.51	60 55	64.84	69 35	46.60
52 25	81.20	61 05	64.50	69 45	46.24
52 35	80.90	61 15	64.16	69 55	45.88
52 45	80.60	61 25	63.82	70 05	45-51
52 55	80.29	61 35	63.48	70 15	45-15
53 05	79.98	61 45	63.14	70 25	44-78
53 15	79.68	61 55	62.80	70 35	44-42
53 25	79-37	62 05	62.46	70 45	44.05
53 35	79.06	62 15	62.12	70 55	43.69
53 45	78.75	62 25	61.78	71 05	43.32
53 55	78.44	62 35	61.44	71 15	42.95
54 05	78.13	62 45	61.10	71 25	42.58
54 15	77.82	62 55	60.75	71 35	42.22
54 25	77.51	63 05	60.41	71 45	41.85
54 35	77.19	63 15	60.06	71 55	41.48
54 45	76.88	63 25	59.72	72 '05	41.11
54 55	76.57	63 35	59.37	72 I5	40.74
55 55	76.25	63 45	59.03	72 25	40.37
55 15	75.94	63 55	58.68	72 35	40.00
55 25	75.62	64 05	58.33	72 45	39.63
55 35	75.30	64 15	57.99	72 55	39.26
55 45	74.99	64 25	57.64	73 05	38.89
55 55	74.67	64 35	57.29	73 15	38.52
56 05	74.35	64 45	56.94	73 25	38.15
56 15	74.03	64 55	56.59	73 35	37.78
56 25	73.71	65 05	56.24	73 45	37.41
56 35	73.39	65 15	55.89	73 55	37.03
56 45	73.07	65 25	55-54	74 05	36.66
56 55	72.75	65 35	55.19	74 15	36.29
57 05	72.43	65 45	54-83	74 25	35.91
57 15	72.10	65 55	54-48	74 35	35.54
57 25	71.78	66 05	54.13	74 45	35.17
57 35	71.46	66 15	53.78	74 55	34.79
57 45	71.13	66 25	53.42	75 05	34.4 2
57 55	70.80	66 35	53.06	75 15	34.04
58 05	70.48	66 45	52.71	75 25	33.66
58 15	70.15	66 55	52.35	75 35	33.29
58 25	69.82	67 05	52.00	75 45	32.91
58 35	69.49	67 15	51.64	75 55	3 ^{2.} 5 3
58 45	69.17	67 25	51.28	76 05	32.16
58 55	68.84	67 35	50.93	76 15	31.78
59 95	68.51	67 45	50.57	76 25	31.40
59 15	68.18	67 55	50.21	76 35	31.03
59 25	67.84	68 05	49.85	76 45	30.65
59 35	67.51	68 15	49.49	76 55	30.27
59 45	67.18	68 25	49.13	77 05	29.89
59 55	66.85	68 35	48.77	77 15	29.51
60 05	66.51	68 45	48.41	77 25	29.13
60 15	66.18	68 55	48.05	77 35	28.76
60 25	65.84	69 05	47.69	77 45	28.37
60 35	65.51	69 15	47.33	77 55	27.99

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

- - - - ----

Middle latitude	Area in	Middle latitude		Middle latıtude	Area in
of quadrilateral.	square miles.	of quadrilateral.		of quadrilateral.	square miles.
78° 05'	27.62	82° 05'	18.43	86° 05'	9.14
78 15	27.24	82 15	18.04	86 15	8.75
78 25	26.85	82 25	17.65	86 25	8.36
7 8 35	26.47	82 35	17.27	86 35	7.97
78 45	26.09	82 45	16.88	86 45	7.59
78 55	25.71	82 55	16.50	86 55	7.20
79 05	25.33	83 05	16.11	87 05	6.81
79 15	24.95	83 15	15.73	87 15	6.42
79 25	24.57	83 25	15-34	87 25	6.03
79 35	24.18	83 35	14-95	87 35	5.64
79 45	23.80	83 45	14-57	87 45	5.25
79 55	23.42	83 55	14-18	87 55	4.86
80 05	23.04	84 05	13.79	88 05	4-47
80 15	22.65	84 15	13.40	88 15	4-09
80 25	22.27	84 25	13.02	88 25	3.70
80 35	21.89	84 35	12.63	88 35	3.31
80 45	21.50	84 45	12.24	88 45	2.92
80 55	21.12	84 55	11.86	88 55	2.53
81 05	20.73	85 05	11.47	89 05	2.14
81 15	20.35	85 15	11.08	89 15	1.75
81 25	19.97	85 25	10.69	89 25	1.36
81 35	19.58	85 35	10.30	89 35	0.97
81 45	19.20	85 45	9.92	89 45	0.58
81 55	18.81	85 55	9.53	89 55	0.19

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

10

TABLE 30.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet.

$$Z = C \frac{B_{\circ} - B}{B_{\circ} + B}$$

$$C \text{ (in feet)} = 52494 \left[1 + \frac{t_{\circ} + t - 64}{900} \right] - \text{English Measures}$$

$$C \text{ (in metres)} = 16000 \left[1 + \frac{2(t_{\circ} + t)}{1000} \right] - \text{Metric Measures}.$$

In which Z = Difference of height of two stations in feet or metres.

 B_{o} , B = Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = Air temperatures at the lower and upper stations respectively.

Values of C.

ENGLISH MEASURES.

METRIC MEASURES.

	GLISH MEASU	JALS.
$\frac{1}{2}(t_0+t).$	log C.	С.
F.		Feet.
10°	4.69834	49928
15	.70339	50511
20	.70837	51094
25	.71330	51677
30	.71818	52261
35	4.72300	52844
40	.72777	53428
45	.73248	54011
50	.73715	54595
55	·74 1 77	55178
60	4.74633	55761
65	.7 508 5	56344
70	·75532	56927
75	-7 597 5	57 51 1
8o	.76413	58094
85	4.76847	58677
90	.77276	59260
95	.77702	59 ⁸ 44
100	.78123	60427

$\frac{1}{2}(t_{0}+t).$	log C.	с.
C. 10° 	4.18639 .19000 .19357 .19712 .20063	Metres. 15360 15488 15616 15744 15872
0	4.20412	16000
+2	.20758	16128
4	.21101	16256
6	.21442	16384
8	.21780	16512
10	4.22115	16640
12	.22448	16768
14	.22778	16896
16	.23106	17024
18	.23431	17152
20	4·23754	17280
22	.24075	17408
24	.24393	17536
26	.24709	17664
28	.25022	17792
30	4.25334	17920
32	.25643	18048
34	.25950	18176
36	.26255	18304

MEAN REFRACTION.

Apparent altitude.	Refrac	ction.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	ction.
$ \begin{array}{c} \mathbf{V} \\ \mathbf$	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & &$	" 124.9 116.9 108.8 100.8 100.9 15.2 77.9 71.1 64.7 59.0 53.9 49.4 45.6 42.3 39.8 37.5 35.6 23.9 28.7 26.7 24.6 33.2 26.7 24.0 21.8 20.6 19.7 19.0 21.8 10.3 10.0 9.5	$ \frac{v}{V} = \frac{v}{7} \frac{v}{100000000000000000000000000000000000$	$ \circ \stackrel{~}{7} \frac{19.7}{7} \frac{7}{10.5} \frac{5}{13.3} \frac{13}{20.3} \frac{13}{$	" 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2	$ \begin{array}{c c} \mathbf{F} \\ \mathbf{F} \\$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	<pre>// 5-3 5.1 4.9 4.7 4.5 4.3 9 3.7 3.6 3.9 3.7 3.6 3.2 3.0 2.9 2.8 2.6 2.5 2.5 2.2 2.2 2.2 2.2 2.2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.6 1.5 5.5 </pre>	$\begin{bmatrix} re \\ V \\ $	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	" 1.5 1.4 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0	w o 2 3 4 5 5 5 5 5 5 6 6 6 6 7 <th7< th=""> 7 7 7</th7<>	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	// 2.2 2.0 1.9 1.7 1.8 1.7 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1

SMITHSONIAN TABLES.

TABLE 32.

FOR CONVERSION OF ARC INTO TIME.

Γī												1			
°	h. m.	0	h. m.	•	h. m.	•	h. m.	٥	h. m.	0	h. m.	ĺ	m. s.	"	s.
0	0 0	60	4 0	120	8 o	180	12 0	240	16 0	300	20 0	0	0 0	0	0.000
I	04	61	4 4 4 8	121	84	181	12 4	241	16 4	301	20 4	I	04 08	I	0.067
2	08	62	48 412	122	88 812	182 183	12 8 1212	242 243		302 303		2	0 8 0 1 2	2 3	0.133
3	0 1 2 0 1 6	63 64	4 16	123 124	816	184	1216	243	16 16	304	20 16		016	4	0.267
45	0 20	65	4 20	125	8 20	185		245	16 20	305	20 20	5	0 20	5 6	0.333
6	0 24 0 28	66 67	4 24 4 28	126 127	8 24 8 28	186 187	12 24 12 28	246 247	16 24 16 28	306 307	20 24 20 28		0 24 0 28	7	0.467
7 8	0 32	68	4 32	128	8 32	188	1232	248	16 32	308	20 32	8	0 32	8	0.533
9	0 36	69	4 36	129 130	8 36	189 190	12 36 12 40	²⁴⁹ 250	16 36 16 40	<u>309</u> 310	20 36	<u>9</u> 10	0 36 0 40	9 10	0.600
10	0 40	70 71	<u>4 40</u> 4 44	130	8 40 8 44	191	12 40	250	16 44	311	20 40	11	0 44		0.733
11 12	0 44	72	4 44	132	848	192	12 48	252	1648	312	20 48	12	o 48	I 2	0.800
13	0 52	73	4 52	133	8 52	193		253	16 52 16 56	313 314	20 52 20 56	13 14	0 52 0 56	13 14	
14 15	056 10	74 75	456 50	134 135	8 56 9 0	194 195	12 56 13 0	²⁵⁴ 255	10 30	315	21 0	15	1 0	15	1.000
16	I 4	76	54	136	94	196	13 4	256	17 4	316	21 4 21 8	16	14 18	16	
17 18	1 Ś 112	77 78	5 8 512	137 138	98 912	197 198	13 8 1312	257 258	17 8 1712	317 318		17 18	1 8	17 18	1.133
19	1 16	79	516	139	916	199	13 16	259	17 16	319	21 16	19	1 16	_ 19	1.267
20	1 20	80	5 20	140	9 20	200	13 20	260	17 20	320	21 20		1 20	20	1.333
21	124 128	81 82	524 528	141 142	9 24 9 28	201 202	1324 1328	261 262	17 24 17 28	321 322	21 24 21 28	21 22	124 128	21 22	1.400 1.467
22 23	1 32	83	5 32	143	9 3 ²	203		263	17 32	323	21 32	23	1 32	23	1.533
24	1 36	84	5 36	144 145	9 36	204	~~	264		324 325	21 36 21 40	24 25	1 36 1 40	²⁴ 25	1.600 1.667
25 26	1 40 1 44	85 86	5 40 5 44	145	9 40 9 44	205 206	÷	265 266		326		26	I 40	26	
27	I 48	87	548	147	9 48	207	1348	267	17 48	327	21 48	27	1 48	27	1.800
28	1 52 1 56	88 89	5 52 5 56	148 149	9 52 9 56	208 209	13 52 13 56	268 269	17 52 17 56	328 329	21 52 21 56	28 29	1 52 1 56	28 29	
²⁹ 30	2 0	- 90	<u> </u>	150	10 0	210	14 0	270	18 0	330	22 0	30	2 0	30	2.000
31	24	- 91	64 68	151	10 4 10 8	211	14 4 14 8	271	18 4	331	22 4	31	2 4	31	2.067
32	28 212	92	68 612	152	10 8 1012	212 213	14 8 1412	272 273	188 1812	332	22 8 22 12	32	28 212	32	2.133 2.200
33	2 1 2	93 94		154	1016	213	14 16	274	18 16	333	22 16	33 34	216	33 34	2.267.
34 35	2 20	94 95		155			14 20	275	18 20	334 335	22 20	34 35	2 20	34 35	2.333
36	2 24 2 28	96 97	6 24 6 28	156 157	10 24 10 28	216 217	14 24 14 28	276 277	18 24 18 28	336 337	22 24 22 28	36 37	2 24 2 28	36 37	2.400 2.467
38	2 32	98	6 32	158	10 32	218	I4 32	278	18 32	338	22 32	38	2 32	38	2.533
_39	2 36	<u>99</u>	6 36 6 40	159 160	10 36 10 40	219 220	14 36	279 280	18 36 18 40	<u>339</u> 340	22 36 22 40	<u>39</u> 40	2 36	<u>39</u> 40	2.600
40 41	2 40	100	644	161	10 40	221	14 40 14 44	281	18 44	341	22 40	41	2 40	41	2.733
42	2 48	102	648	162	1048	222	14 48	282	18 48	342	22 48	42	2 48	42	2.800
43	2 52 2 56	103 104	6 52 6 56	163 164	10 52 10 56	223 224	14 52 14 56	283 284	18 52 18 56	343 344	22 52 22 56	43	2 52 2 56	43 44	2.867 2.933
44 45	3 0	105	7 0	165	11 0	225	15 0	285	19 0	345	23 0	44	3 0	44 45	3.000
46	34	106	74	166		226		286	· .	346		46	34	46	3.067
47 48	38 312	107 108	78 712	167 168		227 228	5	287 288	198 1912	347 348	1 2 1	47 48	3 8 312	47 48	3.133 3.200
49	316	109	7 16	169	11 16	229	1516	289	1916	<u>_349</u>	2316	49	316	49	3.267
50	3 20	110	7 20	170	11 20	230		290	19 20	350	<u> </u>	50	3 20	50	3.333_
51 52	3 24 3 28	111 112	7 24 7 28	171 172	11 24 11 28	231 232	1524 1528	291 292		351 352		51 52	3 24 3 28	51 52	3.400 3.467
53	3 32	113	7 32	173	11 32	233	15 32	293	19 32	353	23 32	53	3 32	53	3.533
54 55	3 36 3 40	114 115	7 36 7 40	174 175	11 36 11 40	²³⁴ 235	1536 1540	²⁹⁴ 295	19 36 19 40	354	23 36 23 40	54 55	3 36	54 55	3.600 3.667
56	344	116		176	11 44	236	1544	296		356	23 44	56	340 344	56	3733
57 58	344 348	117 118	7 44 7 48	177	11 48 11 52	237	1548	297	1948	357	23 48	57	348	57 58	3.800
58 59	3 52 3 56	118 119	7 52 7 56	178 179		238	1552 1556	298 299		358 359	23 52 23 56	58 59	3 52 3 56	58 59	3.867 3.933
60	4 0	120	80	180	12 0	240	16 0		20 0			60	4 0	60	
						<u> </u>					<u> </u>				<u> </u>
·		_	_					-						Ta	<u></u>

FOR CONVERSION OF TIME INTO ARC.

.

З.

				Но	urs of T	ime in	to Arc.				
Time.	Arc.	Time	. Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time	. Arc.
hrs.	0	hrs.	0	hrs.	0	hrs.	0	hrs.	0	hrs.	0
1 2 3 4	15 30 45 60	5 6 7 8	75 90 105 120	9 10 11 12	135 150 165 180	13 14 15 16	195 210 225 240	17 18 19 20	255 270 285 300	21 22 23 24	315 330 345 360
Minutes of Time into Arc. Seconds of Time into Arc.											
m. °' m. °' m. °' s. '" s. '" s. '"											
1 2 3 4	0 15 0 30 0 45 1 0	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 0	1 2 3 4	015 030 045 10	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 0
5 6 7 8 9	1 15 1 30 1 45 2 0 2 15	25 26 27 28 29	6 15 6 30 6 45 7 0 7 15	45 46 47 48 49	11 15 11 30 11 45 12 0 12 15	5 6 7 8 9	1 15 1 30 1 45 2 0 2 15	25 26 27 28 29	6 15 6 30 6 45 7 0 7 15	45 46 47 48 49	11 15 11 30 11 45 12 0 12 15
10 11 12 13 14	2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30	10 11 12 13 14	2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30
15 16 17 18 19	3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45	15 16 17 18 19	3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45
20	50	40	10 0	60	15 0	20	50	40	10 0	60	15 0
			Hundr	edths (of a Sec	ond of	Time i	nto Arc	•		
Hundi of a ond of	Sec-	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.	00 10 20 30 40 50 60 70 80	" 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00	1.65 3.15 4.65 6.15 7.65 9.15 10.65	" 0.30 1.80 3.30 4.80 6.30 7.80 9.30 10.80 12.30	" 0.45 1.95 3.45 4.95 6.45 7.95 9.45 10.95 12.45	" 0.60 2.10 3.60 5.10 6.60 8.10 9.60 11.10 12.60	<pre>% 0.75 2.25 3.75 5.25 6.75 8.25 9.75 11.25 12.75</pre>	" 0.90 2.40 3.90 5.40 6.90 8.40 9.90 11.40 12.90	" 1.05 2.55 4.05 5.55 7.05 8.55 10.05 11.55 13.05	" 1.20 2.70 4.20 5.70 7.20 8.70 10.20 11.70 13.20	" 1.35 2.85 4.35 5.85 7.35 8.85 10.35 11.85 13.35 14.85
	.90	13.50		13.80	13.95	14.10	14.25	14.40	14.55	14.70	14-85

SMITHSONIAN TABLES.

l F

TABLE 34.

CONVERSION OF MEAN TIME INTO SIDEREAL TIME.

S	m O	m I	m 2	m 3				
0	hms 000	h m s 6 5 1 5	h m s 12 10 29	h m s 181544	s 0.00	m s O O	s 0.50	m s 3 3
I	065	6 11 20	12 16 34	18 21 49	0.01	04	0.51	36.
2	0 12 10	6 17 25 6 23 30	12 22 40 12 28 45	18 27 54 18 33 59	0.02	07	0.52	3 10 3 14
3	0 24 21	6 29 36	12 34 50	18 40 5	0.04	015	0.54	317
4 5 6	0 30 26	6 35 41	12 40 55	18 46 10	0.05	0 18	0.55	3 21
	0 36 31	6 41 46	1247 I	18 52 15	0.06	0 22	0.56	3 25 3 28
8	0 42 37	6 47 51	12 53 6	18 58 20	0.07	0 26	0.57	3 28
	0 48 42	6 53 56	12 59 11	19 4 26	0.08	0 29	0.58	3 32
9	0 54 47	7 0 2	13 5 16	19 10 31	0.09	0 33	0.59	3 35
10	1 0 52	767	13 11 21	19 16 36	0.10	0 37	0.60	<u>3 39</u>
11	1 6 58	7 12 12	13 17 27	19 22 41 19 28 47	0.11 0.12	0 40	0.61	3 43
12 13	1 13 3	7 18 17 7 24 23	13 23 32 13 29 37	19 28 47	0.12	044 047	0.62 0.63	346 350
13	1 25 13	7 30 28	13 35 42	19 40 57	0.14	0 51	0.64	3 54
	1 31 19		13 41 48	1947 2	0.15		0.65	3 57
15 16	1 37 24	7 36 33 7 42 38	13 47 53	19 53 7	0.16	o <u>5</u> 8	0.66	41
17	1 43 29	7 48 44	13 47 53 13 53 58	19 59 13	0.17	12	0.67	4 5 4 8
18	I 49 34	7 54 49 8 0 54	14 0 3	20 5 18	0.18	16	0.68	
19	2 1 45		14 6 9	20 11 23	0.19	19	0.69	4 12
20	<u></u>	<u></u>	<u>14 12 14</u> 14 18 19	20 17 28	0.20	1 13	0.70	4 16
21 22	2 7 50 2 13 55	8 13 5 8 19 10	14 10 19	20 23 34 20 29 39	0.21 0.22	I 17 I 20	0.71 0.72	4 19 4 23
23	2 20 1	8 25 15	14 30 30	20 29 39 20 20 35 44	0.22	I 24	0.72	4 23
24	2 26 6	8 31 20	14 36 35	20 41 49	0.24	1 28	0.74	4 30
25 26	2 32 11	8 37 26	14 42 40	20 47 55	0.25	1 31	0.75	4 34
	2 38 16	8 43 31	14 48 45	20 54 0	0.26	I 35	0.76	4 34 4 38
27	2 44 22	8 49 36	14 54 51	21 0 5	0.27	1 39	0.77	4 4 I
28 29	2 50 27 2 56 32	85541 9147	15 0 56	21 6 10 21 12 16	0.28 0.29	142 146	0.78	4 45
30	3 2 37	975^2	1513 6	21 18 21	0.30	1 50	0.79 0.80	<u>4 49</u> 4 5 ²
31	3 8 43 3 14 48	9 13 57	15 19 12	21 24 26	0.31	I 53	0.81	4 56
32	3 14 48	9 20 2	15 25 17	21 30 31	0.32	1 57	0.82	4 59
33	3 20 53	9268	15 31 22	21 36 37	0.33	2 I	0.83	
34		9 32 13	15 37 27	21 42 42	0.34	² 4 2 8	0.84	
35 36	3 33 3 3 39 9	9 38 18 9 44 23	15 43 33 15 49 38	21 48 47 21 54 52	0.35 0.36	28 211	0.85 0.86	5 10
37	3 45 14	9 50 28	15 55 43	22 0 58	0.37	215	0.87	5 14 5 18
37 38	3 51 19	9 56 34	16 1 48		0.38	2 19	0.88	5 21
	3 57 24	10 2 39	<u>16 7 54</u>	²² 7 3 22 13 8	0.39	2 22	0.89	5 2 5
40	4 3 30	10 8 44	16 13 59	22 19 13	0.40	2 26	0.90	5 29
41 41	4 9 35	10 14 49	16 20 4	22 25 19	0.41	2 30	0.91	5 32
42	4 15 40 4 21 45	10 20 55	16 26 9	22 31 24	0.42	2 33	0.92	5 36
43 44	4 21 45 4 27 51	10270 10335	16 32 14 16 38 20	22 37 29 22 43 34	0.43 0.44	2 37	0.93	5 40
	4 33 56	10 39 10	16 44 25	22 43 34 22 49 39	0.44	2 4 I 2 4 4	0.94 0.95	5 43 5 47
45 46	4 40 1	10 45 16	16 50 30	22 55 45	0.46	2 44 2 48	0.95	5 51
47 48	4466	10 51 21	16 56 35	23 1 50	0.47	2 52	0.97	
	4 52 12	10 57 26	17 2 41	23 7 55	0.48	2 55	0.98	5 54 5 58 6 2
<u>49</u>	4 58 17	<u>11 3 31</u>	17 8 46	23 14 0	0.49 .	2 59	0.99	62
50	5 4 22	11 9 37	17 14 51	23 20 6	0.50	33	1.00	65
51 52	5 10 27	11 15 42 11 21 47	17 20 50	23 26 11	F	mple . T ct	*ho	
53	5 16 33 5 22 38	11 27 52	17 33 7	23 32 16 23 38 21	time ł	mple: Let be 14 ^h 57 ^m	ale given	inean
54	5 28 43	11 33 58	17 39 12	23 44 27	The	table give	S	
55 56	5 34 48	11 40 3 11 46 8	17 45 17	23 50 32	first fo	or 14 ^h 54 ^m	51" 2 ^m 27	7 "
56	5 40 54	11 46 8	17 51 23	23 56 37	then fo	or 2.		.44
57 58	5 46 59 5 53 4	11 52 13 11 58 19	17 57 28	24 2 42			2 27	7.44
59	5 53 4 5 59 9	12 4 24	18 3 33 18 9 38	24 8 48 24 14 53	The	sum		
60	6 5 15	12 10 29	18 15 44	24 20 58	14" 57" 3	32 ⁴ .56 + 2 ^m required si	27".44 == 1	5°°°'
{	55	/			TO FUC	required a	uorear fin	uc.
			_					

CONVERSION OF SIDEREAL TIME INTO MEAN TIME.

1								
s	m O	m I	m 2	m 3				
0	hms 000	h m s 6 6 1 5	hms 121229	h m s 18 18 44	s 0.00	m s 0 0	s 0.50	m s 33
I	066	6 12 21	12 18 35	18 24 50	0.01	04	0.51	37
2	0 I2 I2 0 I8 I9	6 18 27	12 24 42 12 30 48	18 30 56 18 37 2	0.02 0.03	07 011	0.52	3 10
34	0 24 25	6 24 33 6 30 40	12 36 54	18 43 9	0.03	015	0.53 0.54	3 14 3 18
56	0 30 31	6 36 46	1243 0	18 49 15	0.05	0 18	0.55	3 21
6	0 36 37	6 42 52	12 49 7	18 55 21	0.06	0 22 0 26	0.56	3 25
78	0 42 44 0 48 50	6 48 58 6 55 4	12 55 13 13 1 19	19 I 27 19 7 34	0.07 0.08	0 20	0.57 0.58	3 29 3 32
9	0 54 56	7 1 11	13 7 25	19 13 40	0.09	o 33	0.59	3 36
10	I I 2	7 7 17	13 13 31	19 19 46	0.10	o 37	0.60	3 40
II	I79	7 13 23	13 19 38	19 25 52	0.11	0 40	0.61	343
12 13	1 13 15 1 19 21	7 19 29 7 25 36	13 25 44 13 31 50	19 31 59 19 38 5	0.12 0.13	0 44 0 48	0.62 0.63	3 47 3 51
14	1 25 27	7 31 42	13 37 56	19 44 11	0.14	0 51	0.64	3 51 3 54 3 58
15 16	1 31 34	7 37 48	1344 3	19 50 17	0.15	0 55	0.65	3 58
10	I 37 40 I 43 46	7 43 54 7 50 1	13 50 9 13 56 15	19 56 23 20 2 30	0.16 0.17	059 12	0.66 0.67	42 45
18	1 49 52		14 2 21	20 2 30 20 8 36	0.18	16	0.68	49
19	I 55 59	8 2 1 3	14 8 28	20 14 42	0.19	1 10	0.69	4 13
20	2 2 5	8 8 19	14 14 34	20 20 48	0.20	1 13	0.70	4 16
2I 22	2 8 11 2 14 17	8 14 26 8 20 32	14 20 40 14 26 46	20 26 55 20 33 I	0.21 0.22	1 17 1 21	0.71	4 20 4 24
23	2 20 24	8 26 38	14 32 53	20 39 7	0.23	I 24	0.73	4 27
24	2 26 30	8 32 44	14 38 59	20 45 13	0.24	I 28	0.74	4 3 ^I
25 26	2 32 36 2 38 42	8 38 51 8 44 57	14 45 5	20 51 20 20 57 26	0.25 0.26	I 32 I 35	0.75	4 35 4 38
20	2 30 42	8 51 3	14 57 18	21 3 32	0.27	1 39	0.77	4 4 2
28	2 50 55	8 57 9	15 3 24	21 9 38	0.28	143	0.78	4 46
29	2 57 I	<u>9 3 16</u>	15 9 30	21 15 45	0.29 0.30	<u>146</u> 150	0.79 0.80	<u>4 49</u> 4 53
30	3 3 7	<u>9922</u> 91528	<u>15 15 36</u> 15 21 43	21 21 51 21 27 57	0.31	I 54	0.81	4 57
31 32	3 9 14 3 15 20	9 21 34	15 27 49	21 34 3	0.32	1 57	0.82	50
33	3 21 26	9 27 41	15 33 55	21 40 10	0.33	2 1	0.83 0.84	
34	3 27 32	9 33 47	15 40 1	21 46 16 21 52 22	0.34 0.35	25	0.85	58 511
35 36	3 33 3 ⁸ 3 39 45	9 39 53 9 45 59	15 52 14	21 58 28	0.36	2 1 2	o.86	515
37	3 45 51	0 52 5	15 58 20	22 4 35	0.37	2 16	0.87 0.88	5 19 5 22
37 38	3 51 57	9 58 12 10 4 18	16 4 26	22 IO 4I 22 IO 47	0.38 0.39	2 19 2 23	0.89	5 22 5 26
	3 58 3	10 4 18	16 16 33	22 22 53	0.40	2 26	0.90	5 30
40 41	4 4 10	10 16 24	16 22 45	22 29 0	0.41	2 30	0.91	5 33
42	4 16 22	10 22 37	16 28 51	22 35 6	0.42	2 34 2 37	0.92	5 37 5 41
43	4 22 28	10 28 43	16 34 57	22 41 12 22 47 18	0.43 0.44	² 37 2 41	0.93	
44	4 28 35 4 34 41	10 34 49 10 40 55	16 47 10	22 53 24	0.45	2 4 5	0.95	5 48
45 46	4 40 47	10 47 2	16 53 16	22 59 31	0.46	2 48	0.96 0.97	5 52 5 55
47	4 46 53	10 53 8	16 59 22	23 5 37 23 11 43	0.47 0.48	2 52	0.98	5 59
48 49	4 53 0 4 59 6	10 59 14 11 5 20	17 5 29	23 17 49	0.49	2 59	0.99	
50	5 5 12	11 11 27	17 17 41	23 23 56	0.50	3 3	1.00	66
51	5 11 18	11 17 33	17 23 47	23 30 2	1			
52	5 17 25	11 23 39	17 29 54	23 36 8 23 42 14		ample: Gi		0 ^m O ^s .
53	5 23 31 5 29 37	11 35 52	17 42 6	23 48 21		e table giv or 14 ^h 57 ^m		27
55	5 35 43	11 41 58	17 48 12	23 54 27	then	for 2	42	0.44
56	5 41 50	1140 4	17 54 19	24 0 33		15 0	0 2	27.44
57	5 47 56	11 54 10	18 6 31	24 12 46	Th	e differenc	ce	ra¤ 22ª r6
52 53 54 55 56 57 58 59	5542 608	12 6 23	18 12 37	24 18 52	15"0" is the	0° — 2™27" required	.44 == 14" mean tim	5/ <u>5</u> 2 • 5 0 e.
60	6 6 1 5	12 12 29	18 18 44	24 24 58				
l	<u> </u>	<u> </u>	L	1				

TABLE 36. LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.
0° I 2 3 4	110568.5 110568.8 110569.8 110571.5 110573.9	68.703 68.704 68.705 68.706 68.707	59-594 59-594 59-595 59-595 59-596 59-597	45° 46 47 4 8 49	111132.1 111151.9 111171.6 111191.3 111210.9	69.054 69.067 69.079 69.091 69.103	59.898 59.908 59.919 59.929 59.940
5 6 7 8 9	110577.0 110580.7 110585.1 110590.2 110595.9	68.709 68.711 68.714 68.717 68.721	59.598 59.600 59.603 59.606 59.609	50 51 53 54	111230.5 111249.9 111269.2 111288.3 111307.3	69.115 69.127 69.139 69.151 69.163	59.95% 59.961 59.972 59.982 59.992
10	110602.3	68.725	59.612	55	111326.0	69.175	60.002
11	110609.3	68.729	59.616	56	111344.5	69.186	60.012
12	110617.0	68.734	59.620	57	111362.7	69.198	60.022
13	110625.3	68.739	59.625	58	111380.7	69.209	60.032
14	110634.2	68.745	59.629	59	111398.4	69.220	60.041
15	1 10643.7	68.751	59.634	60	111415.7	69.230	60.051
16	1 10653.8	68.757	59.640	61	111432.7	69.241	60.060
17	1 10664.5	68.763	59.646	62	111449.4	69.251	60.069
18	1 10675.7	68.770	59.652	63	111465.7	69.261	60.077
19	1 10687.5	68.778	59.658	64	111481.5	69.271	60.086
20	110699.9	68.786	59.665	65	111497.0	69.281	60.094
21	110712.8	68.794	59.672	66	111512.0	69.290	60.102
22	110726.2	68.802	59.679	67	111526.5	69.299	60.110
23	110740.1	68.810	59.686	68	111540.5	69.308	60.118
24	110754.4	68.819	59.694	69	111554.1	69.316	60.125
25 26 27 28 29	110769.2 110784.5 110800.2 110816.3 110832.8	68.829 68.838 68.848 68.858 68.858 68.868	59.702 59.710 59.719 59.727 59.736	70 71 72 73 74	111567.1 111579.7 111591.6 111603.0 111613.9	69.324 69.332 69.340 69.347 69.354	60.132 60.139 60.145 60.151 60.157
30	110849.7	68.879	59·745	75	111624.1	69.360	60.163
31	110866.9	68.889	59·755	76	111633.8	69.366	60.168
32	110884.4	68.900	59·764	77	111642.8	69.372	60.173
33	110902.3	68.911	59·774	78	111651.2	69.377	60.177
34	110920.4	68.923	59·784	79	111659.0	69.382	60.182
35	110938.8	68.934	59·794	80	111666.2	69.386	60.186
36	110957.4	68.946	59.804	81	111672.6	69.390	60.189
37	110976.3	68.957	59.814	82	111678.5	69.394	60.192
38	110995.3	68.969	59.824	83	111683.6	69.397	60.195
39	111014.5	68.981	59.834	84	111688.1	69.400	60.195
40	111033.9	68.993	59.845	85	111691.9	69.402	60.199
41	111053.4	69.005	59.855	86	111695.0	69.404	60.201
42	111073.0	69.017	59.866	87	111697.4	69.405	60.202
43	111092.6	69.029	59.876	88	111699.2	69.407	60.203
44	111112.4	69.042	59.887	89	111700.2	69.407	60.203
45	111132.1	69.054	59.898	90	111700.6	69.407	бо. 204

[Derivation of table explained on pp. xlvi-xlviii.]

TABLE 37

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

[Derivation of table explained on p. xlix.]

Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.
0°	111321.9	69.171	60.000	45°	788 50.0	48.995	42.498
1	111305.2	69.162	59.991	46	77466.5	48.135	41.753
2	111254.6	69.130	59.964	47	760 59.2	47.261	40.994
3	111170.4	69.078	59.918	48	74628.5	46.372	40.223
4	111052.6	69.005	59.855	49	73174.9	45.469	39.440
5	110901.2	68.911	59.773	50	71698.9	44.552	38.644
6	110716.2	68.796	59.673	51	70200.8	43.621	37.837
7	110497.7	68.660	59.556	52	68681.1	42.676	37.018
8	110245.8	68.503	59.420	53	67140.3	41.719	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63997.1	39.766	34-493
11	109290.1	67.909	58.905	56	62395.7	38.771	33.630
12	108905.2	67.670	58.697	57	60775.1	37.764	32.757
.13	108487.3	67.411	58.472	58	59135.7	36.745	31.873
14	108036.6	67.131	58.229	59	57478.1	35.715	30.979
15	107553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	61	541 10.2	33.622	29.164
17	106488.5	66.169	57.395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.082	63	5067 5.4	31.488	27.313
19	105294.7	65.427	56.751	64	48934.3	30.406	26.374
20	104649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103973.2	64.606	56.039	66	45407.1	28.215	24.473
22	103265.0	64.166	55.657	67	43622.2	27.106	23.511
23	102525.4	63.706	55.259	68	41823.8	25.988	22.542
24	101754.6	63.227	54.843	69	40012.4	24.862	21.566
25	100953.0	62.729	54.411	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593
27	99257.8	61.676	53.498	72	34506.2	21.441	18.598
28	98364.8	61.121	53.016	73	32648.6	20.287	17.597
29	97441.9	60.548	52.519	74	30780.9	19.126	16.590
30	96489.3	59-956	52.006	75	28903.6	17.960	1 5. 578
31	95507.3	59-345	51.476	76	27017.4	16.788	14. 562
32	94496.2	58.717	50.931	77	25122.8	15.611	1 3. 541
33	93456.3	58.071	50.371	78	23220.4	14.428	1 2. 51 5
34	92387.9	57-407	49.795	79	21310.8	13.242	1 1. 486
35	91291.3	56.726	49.204	80	19394.6	12.051	10.453
36	90166.8	56.027	48.598	81	17472.4	10.857	9.417
37	89014.8	55.311	47.977	82	15544.7	9.659	8.378
38	87835.6	54.578	47.341	83	13612.2	8.458	7.337
39	86629.6	53.829	46.691	84	11675.5	7.255	6.293
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247
41	84138.4	52.281	45.349	86	7791.7	4.841	4.200
42	82854.0	51.483	44.656	87	5845.9	3.632	3.151
43	81544.2	50.669	43.950	88	3898.3	2.422	2.101
44	80209.4	49.840	43.231	89	1949.4	1.211	1.051
45	78850.0	48.995	42.498	90	0.0	0.000	0.000

TABLE 38.

INTERCONVERSION OF NAUTICAL AND STATUTE MILES.

	Thaultar mile ~ 0000.27 rec.							
Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.					
1 .	1.1516	1	0.8684					
2 .	2.3031	2	1.7368					
3 .	3.4547	3	2.6052					
4	4.6062	4	3.4736					
5	5.7 578	5	4.3420					
6	6.9093	6	5.2104					
7	8.0609	7	6.0788					
8	9.2124	8	6.9472					
9	10.3640	9	7.8155					

1 nautical mile * = 6080.27 feet.

SMITHSONIAN TABLES.

* As defined by the United States Coast and Geodetic Survey.

)

TABLE 39. CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENCLISH EQUIVALENTS.

The asterisk (*) indicates that the measure is obsolete or seldom used.

Measure.	Metric Equivalent.	English Equivalent.
El, Netherlands	I metre. 1.7814 " 0.31608 " 0.32484 " 0.30480 " 0.31385 " 0.2969 " 0.2786 " 1.89648 " 0.22558 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.89648 " 1.0569 " 1.89648 " 1.0569 " 1.9400 " 0.8380 " 0.8380 " 0.6688 km.	3.2808 feet. 5.8445 " 1.0370 " 1.0657 " 1 " 1.0297 " 0.9741 " 0.9741 " 0.9140 " 6.2221 " 0.0888 inch. 4.714 statute miles. 1.1508 " " 6.642 " " 0.6214 " " 4.660 " " 4.660 " " 4.660 " " 4.6804 " " 0.3281 feet. 12.356 " 12.356 " 7 " 6.3943 " 2.7424 " 2.7293 " 3500 "

TABLE 40.

ACCELERATION (g) OF CRAVITY ON SURFACE OF EARTH AND DERIVED FUNCTIONS.

 $\phi = geographical latitude.$

φ	g	log g	$\log \frac{1}{2g}$	log √2g	$\frac{\underline{s}'}{\pi^3}^{\dagger}$
	Metres.				Metres.
o°	9.7798	0.99033	8.70864-10	0.64568	0.99090
5	.7803	035	862	569	095
10	.7814	040	857	572	106
15	.7834	049	848	576	I 27
20	.7859	060	837	582	152
25	.7893	075	822	<u>5</u> 89	186
30	.7929	091	806	597	222
35	.7969	109	788	606	264
40	.8014	129	768	616	309
45	.8060	149	748	626	355
50	.8105	169	728	636	401
55	.8150	189	708	646	447
60	.8191	207	690	655	488
65	.8227	223	674	663	525
70	.8261	238	659	670	559
75	.8286	249	648	676	584
8o	.8306	258	639	680	605
85	.8317	263	634	683	616
90	.8322	265	632	684	621

SMITHSONIAN TABLES.

• From *The Solar Parallax and its Related Constants*, by Wm. Harkness, Professor of Mathematics, U. S. N.; Washington: Government Printing Office, 1891.

† This is length of seconds pendulum.

TABLE 41.

LINEAR EXPANSIONS OF PRINCIPAL METALS, IN MICRONS PER Metre (or millionths per unit length).

Name of metal.									Expansion per degree C.	Expansion per degree F.					
Aluminum														20	11.1
Brass			•	•	•	•	•				•	•	•	19	10.5
Copper						•							•	17	9.4
Glass														9	5.0
Gold														15	8.3
Irou, cast														1 1	5.0 8.3 6.1
~ 1.														12	6.7
Lead														28	15.5
Platinum														9	5.0
Platinum-iridium														9 8.7	4 .8
Silver									÷					19	10.5
Steel, hard														12	6.7
Steel, soft						÷.	÷							II	6.1
Tin						÷.								19	10.5
Zinc					÷	ć				÷	÷	ĺ.		29	16.1

SMITHSONIAN TABLES.

¹ Of International Prototype Metres.

TABLE 42. FRACTIONAL CHANCE IN A NUMBER CORRESPONDING TO A CHANCE IN ITS LOCARITHM.

Computed from the formula,

$$\frac{\Delta N}{N} = \frac{\Delta \log N}{\mu},$$

 $\mu =$ modulus of common logarithms = 0.43429448.

For $\Delta \log N$ = 1 unit in	$\frac{\Delta N}{N}$	For $\Delta \log N$ = 4 units in	$\frac{\Delta N}{N}$ (in round numbers)
4th place 5th " 6th " 7th "	4848 48429 48429 484294 4842945	4th place 5th " 6th " 7th "	1000 20000 200000 2000000 2000000

SMITHSONIAN TABLES.

_

4

·-----CONSTANTS.

Numerical Constants.	Number.	Logarithm.			
Base of natural (Napierian) logarithms,	= e = 2.7182818	0.4342945			
Log e, modulus of common logarithms,	$= \mu = 0.4342945$	9.6377843 - 10			
Circumference of circle in degrees,	= 360	2.5563025			
" " in minutes,	= 21600	4.3344538			
" " in seconds.	= 1296000	6.1126050			
,	$=\pi = 3.14159265$	0.497 1499			
Number. Logarithm.					
$2\pi = 6.2831853$ 0.7981799	$1/\pi^2 = 0.1013212$	9.0057003 10			
$\frac{\pi}{3} = 1.0471976$ 0.0200286	$\sqrt{\pi} = 1.7724539$	0.2485749			
$\frac{1}{\pi} = 0.3183099$ 9.5028501 – 10	$\frac{1}{\sqrt{\pi}} = 0.5641896$ $\sqrt{2} = 1.4142136$	9.7514251 — 10 0.1505150			
$\pi^2 = 9.8696044$ 0.9942997					
	$\sqrt{3} = 1.7320508$	0.2385607			
The arc of a circle equal to its radius is					
in degrees, $\rho^{\circ} = 180/\pi$	- 57.29578°				
in minutes, $\rho' = 60 \rho^{\circ}$	= 3437.7468'	3.5362739			
in seconds, $\rho'' = 60 \rho'$	<i>=</i> 206264.8''	5.3144251			
For a circle of unit radius, the					
arc of $1^{\circ} = 1/\rho^{\circ}$	= 0.0174533	8.2418774 - 10			
arc of $I' = I/\rho'$	= 0.0002909	6.4637261 - 10			
arc (or sine) of $I''= I/\rho''$	= 0.00000485	4.6855749-10			
Geodetical Constants.					
Dimensions of the earth (Clarke's spheroid, 1866	and derived quantiti	es.			
Equatorial semi-axis in feet,	<i>= a = 20926062</i> .	7.3206875			
in miles,	<i>= a</i> = 3963.3	3.5980536			
Polar semi-axis in feet,	= b = 20855121.	7.319212 7			
in miles,	b = 20855121. b = 3949.8	3.5965788			
$(\text{Eccentricity})^2 = \frac{a^2 - b^2}{a^2}$	e ² = 0.00676866	7.8305030 — 10			
Flattening $=\frac{a-b}{a}$	= f = 1/294.9784	7.5302098 — 10			
Perimeter of meridian ellipse,	= 24859.76 mi	les.			
Circumference of equator,	= 24901.96	66			
Area of earth's surface,	= 196940400 sq	uare miles.			
Mean density of the earth (HARKNESS)	$= 5.576 \pm 0.016.$				
Surface density " " "	$= 2.56 \pm 0.16$.				
Acceleration of gravity (HARKNESS): g (cm. per second) = 980.60 (I - 0.002662 cm)	os ad) for latitude d a	nd sea level.			
g (cm. per second) = 980.00 (1 - 0.002002 cm	$o^{2} a \phi^{2} i \phi^{2} i \phi^{2} a$	080.04 :			
g (cm. per second) = generating g , at equator = 977.99; g, at Washington =	900.07; g, at 1 alls = 0.087, 17	yoony4,			
g, at poles = 983.21 ; g, at Greenwich =	901.1/.				
Length of the seconds pendulum (HARKNESS): $l = 39.012540 + 0.208268 \sin^2 \phi$ inches = 0		² ϕ metres.			
$l = 39.012540 + 0.200200 \text{ sm} - \phi \text{ inches} = 0$	-1- 0.003290 an	· •			

CONSTANTS. - Continued.

Astronomicai	Constants	(HABKNESS).
--------------	-----------	-------------

Sidereal year = 365.2563578 mean solar days. Sidereal day = $23^{k}56^{m}4.^{s100}$ mean solar time. Mean solar day = $24^{k}3^{m}56.^{s}546$ sidereal time. Mean distance of the earth from the sun = 92800000 miles.

Physical Constants.

Velocity of light (HARKNESS) = 186 337 miles per second = 299 878 km. per second. Velocity of sound through dry air = 1090 $\sqrt{1 + 0.00367 t^{\circ} C}$. feet per second. Weight of distilled water, free from air, barometer 30 inches :

	Weight in	n grains.	Weight io grammes.		
Volume,	62° F.	4ª C.	62° F.	4º C.	
I cubic inch (determination of 1890)	252.286	252.568	16.3479	16.3662	
1 cubic centimetre (1890)	15.3953	15.4125	0.9976	0.9987	
1 cubic foot (1890) at 62º F.	62.2786 I	bs.			

A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm. and temperature 0° C., under standard gravity at latitude 45° and at sea level.

I standard atmosphere = 1033 grammes per sq. cm. = 14.7 pounds per sq. inch. Pressure of mercurial column 1 inch high = 34.5 grammes per sq. cm. = 0.491 pounds per sq. inch.

Weight of dry air (containing 0.0004 of its weight of carbonic acid):

I cubic centimetre at temperature 32° F. and pressure 760 mm. and under the standard value of gravity weighs 0.001 293 05 gramme.

Density of mercury at 0° C. (compared with water of maximum density under atmospheric pressure) = 13.5956.

Freezing point of mercury = $-38.^{\circ}5$ C. (REGNAULT, 1862.)

Coefficient of expansion of air (at const. pressure of 760mm) for 1° C. (DO.): 0.003 670. Coefficient of expansion of mercury for Centigrade temperatures (BROCH):

 $\Delta = \Delta_0 (1 - 0.000 \ 181 \ 792 \ t - 0.000 \ 000 \ 000 \ 175 \ t^2 - .000 \ 000 \ 000 \ 035 \ 116 \ t^3).$

Coefficient of linear expansion of brass for 1° C., $\beta = 0.0000174$ to 0.0000190.

Coefficient of cubical expansion of glass for 1° C., $\gamma = 0.000021$ to 0.000028.

Ordinary glass (RECKNAGEL): at 10° C, $\gamma = 0.000\ 0255$; at 100°, $\gamma = 0.000\ 0276$. Specific heat of dry air compared with an equal weight of water :

at constant pressure, $K_P = 0.2374$ (from 0° to 100° C., REGNAULT). at constant volume, $K_V = 0.1689$.

Ratio of the two specific heats of air (RONTGEN): $K_p / K_v = 1.4053$.

Thermal conductivity of air (GRAETZ): k = 0.000 o484 (1 + 0.001 85 t^{0} , C.) $\frac{\text{gramme.}}{\text{cm. sec.}}$

[The quantity of heat that passes in unit time through unit area of a plate of unit thickness, when its opposite faces differ in temperature by one degree.]

Latent heat of liquefaction of ice (BUNSEN) = 80.025 mass degrees, C.

Latent heat of vaporization of water = $606.5 - 0.695 t^{\circ} C$.

Absolute zero of temperature (THOMSON, Heat, Encyc. Brit.) : - 273.ºo C. = - 459.º4 F.

Mechanical equivalent of heat :*

1 pound-degree, F. (the British thermal unit) = about 778 foot-pounds.

1 pound-degree, C = 1400 foot-pounds.

I calorie or kilogramme-degree, C. = 3087 foot-pounds = 426.8 kilogrammetres = 4187 joules (for g = 981 cm.).

^{*} Based on Prof. Rowland's determinations. (Proc. Am. Acad. Arts and Sci., 1880.)

SYNOPTIC CONVERSION OF ENCLISH AND METRIC UNITS. English to Metric.

Units of length.	Matric (aquivalente.	Logarlthms.
I inch. I foot. I yard. I mile.	2.54000 0.304801 0.914402 1.60935	centimetres. metre. '' kilometres.	0.404 835 9.484 016 — 10 9.961 137 — 10 0.206 650
Units of area.			
I square inch. I square foot. I square yard. I acre. I square mile. ""	6.45163 929.034 0.836131 0.404687 2.59000 259.000	square centimetres. square metre. hectares. square kilometres. hectares.	0.809 669 2.968 032 9.922 274 — 10 9.607 120 — 10 0.413 300 2.413 300
Units of volume.			
1 cubic inch. 1 cubic foot. 1 cubic yard.	16.3872 0.028317 0. 764559	cubic centimetres. cubic metres or steres. cubic metres or steres.	1.214 504 8.452 047 — 10 9.883 411 — 10
Units of capacity. I gallon (U. S.) = 231 cubic in I quart (U. S.). I Imperial gallon (British). 277.463 cubic inches (189 I bushel (U. S.) = 2150.42 cu I bushel (British).	o).	3.78544 litres. 0.94636 litres. 4.54683 litres. 35.2393 litres. 36.3477 litres.	0.578 116 9.976 056 — 10 0.657 709 1.547 027 1.560 477
Units of mass.			
I grain. I pound avoirdupois. I ounce avoirdupois. I ounce troy. I ton (2240 lbs.). I ton (2000 lbs.).	64.7990 0.453593 28.3496 31.1035 1.01605 0.907186	milligrammes. kilogrammes. grammes. grammes. tonnes. tonnes.	1.811 568 9.656 666 — 10 1.452 546 1.492 810 0.006 914 9.957 696 — 10
Units of velocity. I foot per sec. (0.6818 miles p I mile per hr. (1.4667 feet po	per hr.) = 0.30 er sec.) = 0.44	6480 metres per sec. = 1.00 1704 metres per sec. = 1.60	973 km. per hr. 993 km. per hr.
Units of force.			
I poundal. Weight of I grain (for $g = 9$) Weight of I pound av. (for g	81 cm.). = 981 cm.).	13825.5 dynes. 63.57 dynes. 4.45 × 10 ⁵ dynes.	4.140 682 1.803 237 5.648 335
Units of stress— \ln gr I pound per square inch = 70 I pound per square foot = 4	o 207 gramm	es per sa. centimetre.	1.846 997 0.688 634
Units of work—in abs 1 foot-poundal.	oluta maasure.	421 403 ergs.	5.624 698
- in gra 1 foot-pound (for $g = 981$ cm	vitation measure. a.) = 1356.3 \times	10 ⁴ ergs = 0.138255 kilos	gram-metres.
Units of activity (rate I foot-pound per minute (for I horse-power (33 000 foot-po	- O =	= 0.022605 watts. h.) = 746 wa s = 1.01387	force de cheval.
Units of heat. I pound-degree, F. I pound-degree, C.	= 2	52 small calories or gramm 8 pound-degrees, F.	

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. Metric to English.

			······
Units of length.	Ené	glish equivalente.	Logarithms.
1 metre (10 ⁶ microns).	39.3700	inches.	1.595 165
"	3.28083	feet.	0.5159 84
"	1.09361	yards.	0.0 38 863
1 kilometre.	0.62137	miles.	9.793 350 — 10
Units of area.			
1 square centimetre.	0.15500	square inches.	9.190 331 — 10
1 square metre.	10.7639	square feet.	1.031 968
44 44 7	1.19599	square yards.	0.077 726
1 hectare.	2.47104	acres.	0.392880 9.586701 — 10
1 square kilometre.	0 .38610	square miles.	9.500701 - 10
Units of volume.		. 11. 1 .1	0 - 0
I cubic centimetre.	0.	cubic inches.	8.785 496 - 10
I cubic metre or stère.	35.3145	cubic feet. cubic yards.	1.547 953 0.116 589
	1.30794	cubic yarus.	0.110 509
Units of capacity. 1 litre (61.023 cubic inches).	0.06.11-	gallong (IL S)	0 (01 88)
"	0.26417 1.05668	gallons (U. S.). quarts (U. S.).	9.421 884 — 10 0.023 944
"	0.21993	Imp. gallons (British).	9.34 2 291 - 10
I hectolitre.	2.83774	bushels (U. S.).	0.452 973
"	2.75121	bushels (British).	0.439 523
Units of mass.			107 5- 5
I gramme.	1 5.4324	grains.	1.188 433
1 kilogramme.	2.20462	pounds avoirdupois.	0.343 334
"	35.2739	ounces avoirdupois.	1.547 454
"	32.1 507	ounces troy.	1.507 190
I tonne.	0.98421	tons (2240 lbs.).	9.993 086 10
66	1.10231	tons (2000 lbs:).	0.042 304
Units of velocity.			
1 metre per second.	3.2808	feet per second.	0.515984
	2.2369	miles per hour.	0.349653
1 km. per hr. (0.2778 m. per sec.).	0.62137	miles per hour.	9.793 350 — 10
Units of force.			
I dyne (weight of (981)-1 grammes,	for $g = 981$	cm.) = 7.2330×10^{-5} p	oundals.
Units of stress—In gravitation maa	sure.		
I gramme per square centimetre.	0.014223 p	oounds per sq. inch.	
		ounds per sq. foot.	
I standard atmosphere.	14.7 P	ounds per sq. inch. (S	ee def. p. 172.)
Units of work — in absolute measure			
I erg.	2.3730 X I	10 ⁶ foot poundals.	
I megalerg = 10^6 ergs; I joule = 10^6	o ⁷ ergs.		
— in gravitation measu	ıra.		
1 kilogramme-metre (for $g = 981$ cm		10 ⁶ erg s = 7.2330 foot-p	ounds.
Units of activity (rate of doing v			
I watt = I joule per sec. (= 44.2385		per minute, for $g = 981$	(cm.) = 0.10194
kilogramme-metre per sec., for			
I force de cheval $= 75$ kilogramme-	netres per se	$ec. = 735\frac{8}{4}$ watts = 0.986	632 horse-power.
Units of heat.			
I calorie or kilogramme-degree $= 3$.			
I small calorie or therm, or gramme	e-degree == o.	.001 calorie or kilogram	me-degree.

SMITHSONIAN TABLES.

· Mal

DIMENSIONS OF PHYSICAL QUANTITIES.

 $\mathbf{L} = \text{length}; \mathbf{M} = \text{mass}; \mathbf{T} = \text{time}.$

Quantity.	Dimensione	Quant	ity.		Dimensions,	
Area.	[L ²]	Momen	tum.		[L M T ⁻¹]	
Volume.	[L ⁸]	Momen	t of Ine	rtia.	[M L ²]	
Mass.	[M]	Force.			[L M T ⁻²]	
Density.	[M L-8]	Stress	(per unit a	rea).	[L ⁻¹ M T ⁻²]	
Velocity.	[L T ⁻¹]	Work o	r Energ	y.	$[L^2 M T^{-2}]$	
Acceleration.	[L T ⁻²]	Rate of	Workin	g (Power)). $[L^2 M T^{-3}]$	
Angle.	[o]	Heat.		0,	[L ² M T ⁻²]	
Angular Velocity	. [T ⁻¹]	Therma	ıl Condu	activity.		
				-	Dimensions In	
	Electrostatics			Symbol.	electrostatic systsm.	
Quantity of Electric				E	$[L^{\frac{3}{2}} M^{\frac{1}{2}} T^{-1}]$	
Surface Density: o	luantity per ur	nt area.		σ	$[L^{-1} M^{\frac{1}{2}} T^{-1}]$	
Difference of Pot to move a quantity of	ential: quan	work doza)	required	Ε	[L ³ M ³ T ⁻¹]	
tity moved).	electricity; (work uone)	÷ (quan-			
Electric Force, or (quantity) ÷ (distance	Electro-m e²).	otive Int	ensity:	F	[L ^{} M¹ T]}	
Capacity of an accun	-	Ε.		C or q	[L]	
Specific Inductiv	e Capacity	y.		k	[0]	
in	Magnetics.				Dimensions in electro-magnetic system.	
	•	h of Dala				
Quantity of Magnetis Strength or Inten				m	$[L^{\frac{3}{2}} M^{\frac{1}{2}} T^{-1}]$	
(quantity) \div (distance			۴	S	[L []] M ¹ T ¹]	
Magnetic Force.		. 0 .1 .		Ş	$[L^{-\frac{1}{2}}M^{\frac{1}{2}}T^{-1}]$	
Magnetic Moment				ml	[L [§] M ¹ T ⁻¹]	
Intensity of Magn unit volume.		•	•	7	$[L^{-\frac{1}{2}}M^{\frac{1}{2}}T^{-1}]$	
Magnetic Potenti of magnetism ; (work				V or Ω	[L ¹ M ¹ T ⁻¹]	
Magnetic Inducti	ve Capacit	у.		μ	[0]	
In Electro-	magnetics.		Symbol.	Dimensions electro-mag eystem.	in Name of netic practical unit.	
Intensity of Current			i	[L ³ M ³ T ⁻		
Quantity of Electrici (intensity) \times (time).	ty conveyed by	y current:	e	[L ³ M ³]	Coulomb.	
Potential, or differen done) ÷ (quantity of			E	[L ³ M ³ T	2] Volt.	
work is done). Electric Force: the	e mechanical :	force act-	詎	[L ¹ M ¹ T-	2]	
ing on electro-magne (mechanical force) ÷	etic unit of (quantity).	quantity ;	_			
Resistance of a con			R	[L T ⁻¹] [L ⁻¹ T ²]	Ohm. Farad.	
per unit potential-diffe	Capacity: quantity of electricity stored up q per unit potential-difference produced by it.					
Specific Conduct current passing acros action of unit electric	s unit area ι	tensity of inder the		[L ⁻² T]		
Specific Resistan specific conductivity.	ce: the reci	procal of	r	[L ² T ¹]		

INDEX.

PAGE
Acceleration, dimensions of 175
of gravity, formula for
table of values of
Air, cubical expansion, specific heat, thermal
conductivity, and weight of
Airy, Sir George, treatise cited
Albrecht, Dr. Th., treatise citedlxxx
Algebraic formulasxiii–xv
Alignment curvelvi
Aluminum, linear expansion of
Ampère, dimensions of
Angles equivalents in eres
Angles, equivalents in arcs
Sum of, in spheroidal triangle
Angular velocity, dimensions of175
Annulus, circular, area ofxxx
Antilogarithms, explanation of use ofxcix
4-place table of
Appendix
Arcs, equivalents in anglesxvii
of meridians and parallelsxlvi-l
table of lengths of meridional78-80
table of lengths of parallel81-83
table of time equivalents162
Arexli
Area, of circlexxx
table of values of23
of surface of earth
Areas, of continentslxv
of oceanslxv
of plane and curved surfacesxxix-xxxi
of zones and quadrilaterals of the
earth's surfacel-lii
tables of values of
of regular polygonsxxx
Arithmetic means, progression, and series. xiii
Astronomical constants
co-ordinateslxvii
latitudexliv
timelxxii
Astronomylxvii-lxxxii
references to works onlxxxii
Atmosphere, mass of earth'slxvi
standard pressure of172
weight of unit of volume of
Average error, definition oflxxxiv
Azimuth astronomical and geodeticlvii
computation of differences oflviii-lxi
determination of lxxix

Cable lengthxxxviii
Calorie, value of172
Capacity, measures of, Britishxxxviii
Metric
Centare
Chauvenet, Wm., treatise citedlxxxii
Circumference, of circlexxviii
table of values of23
of earthxlix, 171
of ellipsexxix
C. G. S. system of units
Clarke, General A. R., spheroid of xliii
treatise citedlxvi
Coefficient, of cubical expansion of air and
mercury
of linear expansion of metals170
of refractionlxiii
Compression, of earthxliii
Computation, of differences of latitude, lon-
gitude, and azimuthlviii
of mean and probable errorsxcv
Conductivity, thermal, of air172
Cone, surface ofxxxi
volume ofxxxii
Constants, astronomical172
geodetical171
numerical171
of earth's spheroidxliv
Continental measures (table of British and
Metric equivalents)
Continents, areas oflxv
average heights oflxv
Conversion, of arcs into angles and angles
into arcs
of British and Metric units2, 3, 173, 174
Co-ordinates, astronomicallxvii
for projection of mapsliii-lvi
table of, scale 1/25000084-91
table of, scale 1/12 500092-101

INDEX.

Co-ordinates (continued).
table of, scale 1/126720 102-109
table of, scale 1/63360 110-121
table of, scale 1/200000 122-131
table of, scale 1/80000132-141
of generating ellipse of earth's spheroid xliv
Copper, linear expansion of
Cord (of wood), volume ofxxxix
Correction, for astronomical refraction, table
of mean values of161
to observed angle for eccentric position
of instrumentlxiii
to reduce measured base to sea levellxiv
Cosines, table of natural
use of table explainedc
Cotangents, table of natural
use of table explainedc
Coulomb, dimensions of175
Cubature, of volumesxxxii
Cubes, table of
Cube roots, table of4-22
Cylinder, surface ofxxxi
volume ofxxxii
Day, sidereal and solarlxxii, 172
Degrees, number of, in unit radiusxviii
of terrestrial meridianxlvi, 166
of terrestrial parallelxlix, 167
Density, mean, of earth lxv
mean, of superficial strata of earthlxv
of mercury
Departures (and latitudes), table of 32-47
mode of use of table explainedc Depths, average, of oceanslxv
Deptns, average, of oceans
Determination, of azimuthlxxix
of heights, by barometer
by trigonometric levelinglxi of latitudelxxvii
of timelxxiv
Difference, between astronomical and geo-
detic azimuthlvii
of heights, by barometer
by trigonometric levelinglxi
Differences, of latitude, longitude, and azi-
muth, on earth's spheroidlviii
table for computation of
Differential formulasxxi
Dimensions, of earthxliii, 171
of physical quantities
Dip, of sea horizonlxiii
Distance, of sea horizonlxiii
of sun from earth
Doolittle, Prof. C. L., treatise citedlxxxii
. ,

Earth, com	pression of	of ,	 	 	. xliii,	17	I

Earth (continued).
density oflxv
dimensions ofxliii, 171
ellipticity ofxliii, 171
energy (of rotation) oflxvi
equatorial perimeter ofxliii, 171
flattening of
mass oflxvi
meridian perimeter ofxlix, 171
moments of inertia oflxvi
shape ofxliii
surface area oflii
volume oflxv
Eccentricity, of ellipsexliii
of earth's spheroidxliv, 171
El, value of
Electric quantities, dimensions of
Electro-magnetic quantities, dimensions of . 175
Ellipse, area ofxxx
equations to
length of perimeter ofxxix
Ellipsoid, volume of (see Spheroid)xxxiii
Ellipticity, of earthxliii, 171
Energy, dimensions of175
of rotation of earthlxvi
Equations, of ellipse
of Prototype Kilogrammesx!
of Prototype metresxl
Error, in ratio of English yard to Metre xxxvii
Errors, probable, mean, averagelxxxiv, lxxxviii
table of, for interpolated quantitieslxxxvi
theory oflxxxiii
Everett, J. D., treatise citedxlii
Excess, spherical or spheroidallviii
Expansion, cubical, for air and mercury 172
linear, of principal metals170
Farad, dimensions of 175
Fathom, length ofxxxviii
Swedish
Flattening, of earth
Foot, Austrian168

Britishxxxvii French, Rhenish, Spanish, Swedish....168

 1

Gallon, British and wine	L
Gauss's formulas for spherical trianglesxxi	
Geocentric latitudexliv	
Geodesyxliii-lxvi	L
references to works onlxvi	
Geodetic azimuthlvii	L
Geodetic differences of latitude, longitude,	L
and azimuthlviii	
Geodetic linelvii	L
Geodetical constants171	
Geographical latitudexliv	L
Geographical positions, computation of lviii-lxi	
Geoid, definition ofxliii	
Geometric means, progressionxiii	
Glass, linear expansion of 170, 172	
Gold, linear expansion of170	
Gravity, acceleration of, formula for171	
table of values of169	_
Gunter's chain, length ofxxxviii	L
	L
	L
Harkness, Prof. Wm., memoir cited	-
lxv, 169, 171, 172	L
Heat, dimensions of175	
latent, of liquefaction of ice172	-
of vaporization of water172	L
mechanical equivalent of	L
Hectare	
Heights, average, of continentslxv	
determination of, by barometer	
trigonometricallylxi	
Helmert, Dr. F. R., treatise on geodesy	
citedlxvi treatise on theory of errors citedxcviii	
treatise on theory of errors citedxcviii	1
Horizon, dip of sealxiii	M
	N
Imperial pound and yardxxxiv	N
Integrals, definitexxvi	14
indefinite	
Interconversion, of English and Metric	N
units2, 3, 173, 174	14.
of sidereal and solar timelxxiii	
tables for164, 165	
Iron, linear expansion of	M
fion, mear expansion of	N
	N
Joule, value of	N
Jouie, value of	1
	N
Kilogramme, Prototypexxxiv	1.4
equations ofxl	N
relation to poundxxxvi, xli	
Kinetic energy, dimensions of	
of rotation of earthlxvi	

Latitude, astronomical, geocentric, and re-
duced
determination oflxxvii
Latitudes and departures, table of
mode of use of table explainedc
Lead, linear expansion of
Least squares, method oflxxxvi
references to works on
Legendre's theorem for solution of sphe-
roidal triangleslvii
Length, of arc of meridian
of arc of parallelxlix
of equator of earth171
of meridian circumference of earth171
of perimeter of ellipsexxix
of Prototype Metres Nos. 21 and 27xl
of seconds pendulum, formula for171
table of values of169
Leveling, trigonometriclxi
Line (French), value of
Lines, lengths ofxxviii
on a spheroidlvi
Linear measures, Britishxxxvii
Metric
tables for interconversion of 2, 3, 173, 174
Litre
Logarithms, anti-, 4-place table of26, 27
explanation of use ofxcix
4-place table of common24, 25
of natural numbers, table of4-22
of natural numbers, table of $\dots 4^{-22}$
relations of differentxv
relations of differentxv
relations of different
relations of differentxv
relations of differentxv series forxiv
relations of differentxv series forxiv Maclaurin's seriesxxii
relations of differentxv series forxiv Maclaurin's seriesxxii example ofxxii
relations of differentxv series forxiv Maclaurin's seriesxxii example ofxxiii Magnetic quantities, dimensions of175
relations of differentxv series forxiv Maclaurin's seriesxxii example ofxxiii Magnetic quantities, dimensions of175 Maps, co-ordinates for projection of (see
relations of differentxv series forxiv Maclaurin's seriesxxii example ofxxiii Magnetic quantities, dimensions of175 Maps, co-ordinates for projection of (see Co-ordinates for projection of maps)liii
relations of differentxv series forxiv Maclaurin's seriesxii example ofxxiii Magnetic quantities, dimensions of175 Maps, co-ordinates for projection of (see <i>Co-ordinates for projection of maps</i>)liii projection ofcii
relations of differentxv series forxiv Maclaurin's seriesxii example ofxxiii Magnetic quantities, dimensions of175 Maps, co-ordinates for projection of (see <i>Co-ordinates for projection of maps</i>)liii projection ofcii Mass, of earthliv
relations of different
relations of differentxv series forxiv Maclaurin's seriesxii example ofxxiii Magnetic quantities, dimensions of175 Maps, co-ordinates for projection of (see <i>Co-ordinates for projection of maps</i>)liii projection ofcii Mass, of earthliv
relations of different

INDEX.

Measures (continued).	Polygons, regular, areas of
of surface, Britishxxxviii	lengths of lines ofxxvii
Metricxli	Potential (electric), dimensions of175
tables for interconversion of 2, 3, 173, 174	Pothenot's problemlxiv
Mechanical equivalent of heat172	Pound, imperial, avoirdupoisxxxiv
Mechanical units, dimensions of	Power, dimensions of 175
Mensuration	Pressure, of atmosphere
Mercury, density and cubical expansion of 172	Prism, volume ofxxxii
Meridian, arcs of terrestrial	Probable error, definition oflxxxiv
	computation ofxcv
table of lengths of	Projection of mapsliii, cii
circumference of earthxlix, 171	Prototype Kilogrammes and Metresxxxiv
Method of least squareslxxxvi	
Metre, Prototypexxxiv	equations ofxl
equations of Nos. 21 and 27xl	
relation to British yardxxxvi, xli	
Metric systemxl	Quadrilaterals, of earth's surface, areas of1
Mile, Austrian168	tables of areas of142-159
British (statute)xxxvii	Quantity, of electricity, dimensions of 175
Danish, German sea, Netherlands, Nor-	
wegian, Prussian, Swedish	
Nautical	Radii, of curvaturexlv
	Radius of curvature, of meridian, table of
Modulus of common logarithmsxv	logarithms of
Moivre's formulaxvi	of section normal to meridian, table of
Moment of inertia of mass, dimensions of 175	logarithms of
Moments of inertia of earthlxvi	
Momentum, dimensions of175	of section oblique to meridian, table of
	logarithms of
	Radius vector of earth's surfacel
Napierian base (of logarithms)xiv, 171	Rate of working (power), dimensions of 175
Napierian logarithmsxiv	Ratio, of pound to kilogrammexxxvi
Napier's analogiesxx	of specific heats of air172
Natural logarithmsxiv	of yard to metrexxxvi
Nautical mile, table of equivalents in statute	Reciprocals, of natural numbers, table of 4-22
miles	Reduced latitudexliv
Numerical constants171	Reduction to sea level of measured base line. lxiv
	References, to works on astronomylxxxii
	to works on geodesylxvi
Ohm, dimensions of175	to works on the theory of errorsxcviii
	Refraction, astronomical, table of161
	example of computation of
	-
Palm, length of, Englishxxxviii	coefficients of terrestriallxiii
Netherlands168	Right ascensionlxxii
Parallel, arcs of terrestrialxlix	Rode, Danish
table of lengths of $\dots 81-83$	Ruthe, Prussian, Norwegian168
Pendulum, length of seconds	
table of lengths of	
Perch (of masonry) volume ofxxxix	
it erimeter, of circlexxviii	Sea level (see Geoid), reduction of measured
of ellipsexxix	base line tolxiv
of regular polygonxxviii, xxx	Sea surface, area oflxv
Physical constants	Secondary triangulation, differences of lati-
Physical geodesy, salient facts oflxv	tude, longitude, and azimuth inlx
Physical quantities, dimensions of175	Series, binomialxiv
Platinum, linear expansion of	logarithmicxiv
Platinum iridium, linear expansion of170	of Maclaurin and Taylorxii
	trigonometrio
Polyconic projection of mapsliii	trigonometricxvii
graphical process of, explainedcii	Sidereal day and year, length of

Polygons, regular, areas of	
lengths of lines ofxxvii	
Potential (electric), dimensions of175	
Pothenot's problemlxiv	
Pound, imperial, avoirdupoisxxxiv	
Power, dimensions of	
Pressure, of atmosphere	
Prism, volume ofxxxii	
Probable error, definition oflxxxiv	
computation ofxcv	
Projection of mapsliii, cii	
Prototype Kilogrammes and Metres xxxiv	
equations ofxl	
Quadrilaterals, of earth's surface, areas ofl	
tables of areas of142-159	
Quantity, of electricity, dimensions of 175	
adii, of curvaturexlv	
Radius of curvature, of meridian, table of	
logarithms of48-56	
of section normal to meridian, table of	
logarithms of	
of section oblique to meridian, table of	
logarithms of	
Radius vector of earth's surface	
Late of working (power), dimensions of 175	
atio, of pound to kilogrammexxxvi	
of specific heats of air172	
of yard to metrexxxvi	
Reciprocals, of natural numbers, table of 4-22	
Reduced latitudexliv	
Reduction to sea level of measured base line. lxiv	
References, to works on astronomylxxxii	
to works on geodesylxvi	
to works on the theory of errorsxcviii	
Refraction, astronomical, table of161	
example of computation ofciv	
coefficients of terrestriallxiii	
Right ascensionlxxii	
Rode, Danish	
Ruthe, Prussian, Norwegian	
tutio, a russian, troi wegian	
agene, Russian168	
bea level (see <i>Geoid</i>), reduction of measured	
base line to	

ĺ,

Ì

Sidereal timelxxii
table for conversion to mean time165
Signs, of trigonometric functionsxv
Silver, linear expansion of170
Sines, table of natural
explanation of use ofc
Solar timelxxii
table for conversion of mean solar
to sidereal164
Colution of plane triangles
Solution, of plane trianglesxviii
of spherical trianglesxx
of spheroidal triangleslvii
Span, length ofxxxviii
Specific heat of air172
Sphere, equal in surface with earthlii
equal in volume with earthlii
surface ofxxxi
volume ofxxxii
Spherical excess (see Spheroidal excess) lviii
Spheroid, representing the earth
surface of
volume of
volume of earth'slxv
Spheroidal excesslviii
example of computation of
Spheroidal trianglelvii
Square roots, table of4-22
Squares, table of
Standards, of length and massxxxiv
Steel, linear expansion of170
Stèrexli
Stress, dimensions of
units of
Sums, of arithmetic and geometric progres-
sion, and special seriesxiii
sion, and special series
Surfaces (see Areas)xxix
Surface measures, Britishxxxviii
Metric xli
tables for interconversion of 2, 3, 173, 174
Surface, of continentslxv
of earth's spheroidlii
of oceanslxv
of sphere and spheroidxxxi
Surveyor's chain, length ofxxxviii
, , ,
Table for conversion of arc into time162
conversion of mean into sidereal time164
conversion of sidereal into mean time165
conversion of time into arc
determination of heights by barometer160
interconversion of British and Metric
interconversion of British and Metric
units
interconversion of nautical and statute
miles
Table of acceleration of gravity and derived

Table of as		-		-60	J
quantities	s	• • • • • •	••••		

Table of (continued).
antilogarithms, 4-place
areas of quadrilaterals of earth's surface
of 10° extent in latitude and longi-
tude
1° extent in latitude and longi-
tude
tude144, 145
30' extent in latitude and longi-
tude146–148
15' extent in latitude and longi-
tude150-154
10' extent in latitude and longi-
tude156–159
areas of regular polygonsxxx
circumference and area of circle23
constants, astronomical172
geodetical171
numerical
for interconversion of English and
Metric units2, 3, 173, 174
Continental measures of length168
co-ordinates for projection of maps
scale 1/25000084–91
scale 1/125000
scale 1/126720102-109
scale 1/63360110–121
scale 1/200000122-131
scale 1/80000 132-141
departures and latitudes32-47
dimensions of physical quantities175
errors of interpolated values from nu-
merical tableslxxxvi
expansions (linear) of principal metals170
formulas for solution of plane trianglesxix
fractional change in number due to
change in its logarithm
latitudes and departures
lengths of arcs of meridian
of arcs of parallel81-83
of 1° of meridian166
of 1° of parallel167
linear expansions of metals
logarithms, 4-place
anti-, 4-place26, 27
of factors for computing spheroidal
excess
of factors for computing differences
of latitude, longitude, and azi-
muth
of meridian radius of curvature48-55
of radius of curvature of normal
section
of radius of curvature of oblique
sections
mean astronomical refraction
measures and weights —
British, of capacity

Table of (continued).
British, of lengthxxxviii
British, of surfacexxxviii
British, of weightxxxix
Metricxli
tables for interconversion of
2, 3, 173, 174
natural cosines
natural tangents
radii of curvature, logarithms of, for
meridian section
for normal section
for oblique section
reciprocals, squares, cubes, square roots,
cube roots, and logarithms of natural
numbers
refraction, mean astronomical161
signs of trigonometrical functionsxv
values for computing areas and dimen-
sions of regular polygons
for computing perimeter of ellipse xxix
of $\log \frac{1}{2}(1-2m)$ and $\log (1-m)$
used in trigonometric leveling lxii
weights and measures (see Table of
measures and weights)2, 3, 173, 174
Table, traverse (see Traverse table)32-47
Tangents, natural, table of
use of table explainedc
Taschenbuch, Des Ingenieursxcix
Taylor's seriesxxii
Temperature, absolute zero of172
of freezing mercury172
Theory of errorslxxxiii-xcviii
references to works on xcviii
Thermal conductivity, dimensions of175
of air172
Three-point problemlxiv
Time, determination oflxxiv
equivalents in arc, table of
example of use of table
interconversion of sidereal and solar,
tables for164, 165
Tin, linear expansion of
Toise, value in feet and metres168
Ton, long and short
Tonne
Tonneau xli
Trapezoid, area ofxxix
Traverse table 32-47
explanation of use ofc
Triangles, plane, solution of

Triangles (continued). spherical, solution oflvii spheroidal, solution oflvii Triangulation, primary and secondary, differ- ences of latitude, longitude, and azimuth inlviii-lx
Trigonometric functions, of one anglexv of two anglesxvi series forxvi Trigonometric levelinglxi
Units, British Systemxxxvii C. G. S. Systemxlii Metric Systemxl standards of length and massxxiv tables for interconversion of British and Metric2, 3, 173, 174 Useful formulasxvii
Vara, Mexican and Spanish
Weight, of distilled water
Yard, imperialxxxiv ratio of, to metrexxxvi, xxxvi,
Zachariae, G., treatise cited

